Как выглядит инжектор. Инжекторный двигатель – дальнейшая ступень в истории развития ДВС

Система питания инжекторного двигателя современного автомобиля - это сложнейший «организм», состоящий из датчиков, исполнительных устройств и самого главного - блока управления. Не зря в народе его называют «мозги». Именно блок управления контролирует работу всей системы впрыска топлива.

С его помощью происходит нормальное функционирование двигателя, регулировка угла опережения зажигания, момента впрыска топливовоздушной смеси и многих других параметров.

Описание

За многолетнюю историю автомобилестроения появилось несколько типов впрыска топлива. И конструкции инжекторной системы бензинового двигателя различаются, причём существенно. Дизель достаточно схож в системе впрыска с инжектором.

Но есть огромные отличия в конструкции отдельных механизмов - степень сжатия в дизельном моторе во много раз выше. В целом же первые конструкции инжекторных систем очень сильно были похожи на дизельные.

Центральный впрыск топлива

Моновпрыск - это самый простой механизм. Второе название - центральный впрыск. И он же был первым в истории. Массовое применение получил в США в начале 2 половины ХХ века. Как работает центральный впрыск? Простота - это именно то, что понравилось не только автовладельцам, но и производителям. Конструкция очень схожа с карбюратором, только вместо него применяется форсунка.

Она устанавливается на впускном коллекторе - одна на все цилиндры двигателя, независимо от их общего количества. Топливо поступает в коллектор постоянно, как и воздух. В результате происходит образование топливовоздушной смеси, которая распределяется по цилиндрам.


Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

И самое большое неудобство - это то, что при выходе из строя форсунки двигатель останавливается и запустить его невозможно.

Распределённый впрыск топливной смеси

В таких системах количество форсунок равно числу цилиндров. Все форсунки находятся на впускном коллекторе, топливовоздушная смесь подаётся при помощи общей для всех топливной рампы. В ней происходит смешивание бензина и воздуха. Режимы работы форсунок:

  1. Фазированный впрыск - самые современные системы работают именно с его использованием. Количество форсунок и цилиндров одинаковое, открытие и закрытие электроклапанов происходит в зависимости от того, какой такт проходит двигатель. Наилучшим режимом работы мотора считается такой, при котором открытие форсунки происходит непосредственно перед началом такта впуска. И двигатель работает устойчиво, и достигается высокая экономия бензина. Преимущества такой топливной системы очевидны.
  2. Одновременный впрыск топливовоздушной смеси - открытие форсунок не зависит от такта. Они все открываются одновременно, несмотря на то, что находятся на впускных коллекторах «своих» цилиндров. Это несколько модернизированный моновпрыск, несмотря на то, что форсунок несколько, управление ими происходит так, будто установлена всего одна. В общем, такие конструкции надёжны и работа их стабильна, но по характеристикам уступают более современным конструкциям.
  3. Попарно-параллельный впрыск топливной смеси немного отличается от предыдущего. Главное отличие - открываются не все форсунки разом, а парами. Одна пара открывается перед впуском, вторая - перед выпуском. Именно так обычно работает впрыск. Из употребления такие системы вышли давно, но, например, если выходит из строя датчик фаз, современные инжекторы переходят в аварийный режим (попарно-параллельный впрыск происходит вместо фазированного, так как без параметров этого датчика работа невозможна).
  4. Системы непосредственного впрыска топлива имеют высокую стоимость, но и надёжность у них завидная. Экономичность и мощность двигателя на высоком уровне, регулировка подачи топливовоздушной смеси максимально точная. Мотор может быстро изменить режим работы. Электромагнитные форсунки устанавливаются в ГБЦ, смесь распыляется непосредственно в камеру сгорания цилиндра (отсюда и название системы).


В конструкции отсутствует впускной коллектор и клапан. Реализация конструкции довольно сложная, так как в ГБЦ на каждый цилиндр есть отверстия под свечи, клапаны (2 или 4, в зависимости от типа мотора). Элементарно не хватает места для установки форсунки.

Изначально такие системы впрыска устанавливались на габаритные и мощные двигатели, на бюджетных их не встретить. И ремонт таких систем выливается в круглую сумму.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев - 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте - при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки - в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.


Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания - именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же - подача смеси и её сгорание.
  5. Модуль зажигания - короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная - высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.


Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина - во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Инжектор – является самым важным механизмом во всём автомобиле. Устройство и работу инжектора нельзя назвать не слишком легкой, ни слишком сложной. Обычному автолюбителю вовсе не требуется знать все тонкости такого типа двигателя, но основы знать нужно всегда, тем более, если вы увлекаетесь темой автомобильного ремонта

Естественно, самостоятельно вы не отремонтируете инжектор, но знания помогут вам не сглупить в сервисе при оплате счёта.

Что такое инжектор в устройстве автомобиля?

Инжектор - это специальная форсунка, которую устанавливают на ДВС, либо она является одной из частей всей системы. Эта форсунка распыляет жидкое или газообразное топливо. После статьи вы можете увидеть видео, чтобы лучше узнать о работе инжектора.



Первыми инжектор начали использовать автопроизводители Bosh, они поставили этот тип в купе с двухтактным двигателем. Через несколько лет, а точнее в 1954 году за ними повторили Mercedes и поставили инжектор в свой новый автомобиль. Правда, не каждый мог позволить себе такую покупку, ведь на тот момент это было очень дорого. Основной пик популярности инжекторов начался только через 20 лет. Карбюраторы были мгновенно вытеснены с рынков, это хорошо было видно в европейских, американских и японских странах. И до сих пор в большинстве автомобилей используется инжектор.

Система впрыска топлива, которая используется в инжекторе, хороша тем, что её направленный впрыск идёт сразу в цилиндры или же во впускной коллектор. Это происходит благодаря форсунке. Форсунки существуют двух видов, которые отличаются своим местом в инжекторе и своей работой:

  • Моновпрыск – также его называют центральным впрыском. При моновпрыске используется одна форсунка, которая подает топливо во все цилиндры двигателя. В таком случае, инжектор крепится на впускном коллекторе. Но в наше время моновпрыск уже почти не используется мировыми автопроизводителями.
  • Второй вид это распределенный впрыск – это обозначает, что для каждый цилиндр обслуживается своей форсункой.
У второго вида впрыска существует четыре основных типа:
  1. Прямой впрыск – это впрыск, при котором топливо мгновенно переходит в камеру сгорания мотора;
  2. Одновременный впрыск – это впрыск, где каждая форсунка работают одновременно с другими, синхронно впрыскивая топливо в каждый цилиндр;
  3. Попарно-параллельный впрыск – это впрыск, при котором происходит открытие форсунок по парам. То есть, первая форсунка открывается непосредственно перед впуском, а вторая форсунка уже перед выпуском. Этот тип используется только при запуске авто, после автомобиль переходит на фазированный впрыск;
  4. Фазированный впрыск – это впрыск, при котором каждая форсунка открывается непосредственно перед впуском.

Типы инжекторных форсунок



Существует три типа инжекторных форсунок:
  • Электрогидравлическая;
  • Пьезоэлектрическая.
  • Электромагнитная;
Электромагнитная форсунка – этот тип форсунок простой, он чаще всего устанавливается на бензиновые моторы. Эта форсунка также используется в ДВС с впрыском. Электромагнитная форсунка состоит из двух основных частей: сопло и электромагнитный клапан. Когда эта форсунка начинает работать, то на обмотку клапана подается напряжение. Этим процессом управляет блок управления, он решает, с какой частотой подавать ток. Из-за этого процесса образуется электромагнитное поле. Оно втягивает иглу, освобождает сопло и в результате этого происходит впрыск. Нужно заметить, что происходит это синхронно с сжиманием пружины. Когда электромагнитное поле продает, то пружина разжимается, а игла уходит обратно.

Электрогидравлическая форсунка – этот тип форсунок, применяется в основном на дизельных моторах (Они применяются также на ДВС с системой Common Rail). Эта форсунка состоит из трёх основных частей это камера управления, электромагнитный клапан и оба дросселя. Из-за разного давления солярки на поршень и форсунку (на поршень приходится больше давления) эти части могут работать. Когда электромагнитный клапан находится в закрытом состоянии и обесточен, то иглу нашей форсунки прижимает к седлу.

Сначала блок отправления синхронно открывает сливной дроссель и клапан. После этого топливная магистраль заполняется соляркой, которая в это время вытекает через дроссель. В этот момент давление дизельного топлива уменьшается, а на игле нет. Следовательно, она идёт вверх и происходит впрыск.

Пьезоэлектрическая форсунка – этот тип форсунок является лучшим вариантом форсунка. Его обычно устанавливают только на дизельные двигатели. Основное преимущество этой форсунки в её скорости (она быстрее первого вида форсунка в четыре раза). Также заметим то, что она имеют очень точную дозировку. Особенность этого форсунка в пьезокристалле, он имеет свойство изменять свой размер под напряжением. Такой форсунок состоит из трёх частей: клапан, пьезоэлемент и конечно же игла.

По принципу работы он имеет сходство с электрогидравлической форсункой. Как и там все зависит от давления. Пьезоэлемент увеличивает свою длину из-за электрического тока. Пьезоэлемент давит на толкатель. После этого открывается клапан, и топливо движется дальше в магистраль. Впрыск происходит в том момент, когда давление на иглу уменьшается, и она идёт вверх.

Принцип работы инжектора



В любом инжекторе имеются следующие элементы:
  1. Датчики;
  2. Форсунки;
  3. Электронный блок управления;
  4. Регуляторы давления.
  5. Бензонасос (электрический);
В механической части инжектора нет ничего сложного, любой может разобраться с его компонентами.

Если говорить вкратце, то принцип работы инжектора выглядит так:

  • Сначала датчик проверяет количество воздуха, который поступает в мотор.
  • Дальше все эти данные идут в блок управления, вместе с прочими параметрами (какая температура воздуха, насколько открыта дроссельная заслонка, с какой скоростью вращается коленвал, какая температура у силового агрегата и другие данные).
  • Там в блоке управления происходит анализ. Далее он высчитывает, сколько топливо (дизельного, газа или бензина) необходимо для сжигания.
  • После этого подаётся электрический разряд, направленный на форсунки инжектора, которые открываясь, пропускают топливо дальше во впускной коллектор.
Самая сложная и непонятная часть во всей инжекторной системе – это компьютер, ведь программа, встроенная в него, производит множество вычислений. Она успевает считывать параметры, как и самого автомобиля, так и внешние условия.

Теперь вы понимаете, что для работы инжектора необходимы эти два компонента:

  • Датчик кислорода.
  • Каталитический нейтрализатор отработанных газов.
Каталитический нейтрализатор. Его вид очень похож на соты, с покрытием из специального слоя. Его задача хоть и маленькая, но очень значительная. Ему необходимо дожигать то топливо, которое не догорело и выходит вместе с выхлопными газами. Он быстро потеряет эту способность, нужно всего лишь несколько раз заправиться этилированным бензином. Есть еще причины, в результате которой он может сломаться. Бывает, что он оплавляется из-за длительной езды, в такой ситуации эти соты забиваются нагаром. Это может произойти, если у вас неисправность с датчиком кислорода или в системе зажигания.

Датчик кислорода. Сейчас в автомобилях используются датчики из циркония, когда они нагреваются до огромных температур, они передают в блок управления данные. Он анализирует состоянии смеси, ориентируясь на состав выхлопа. Блок управления решает, какая эта смесь и корректирует подачу топлива.

Инжектор является сложнейшим механизмом, поэтому если вдруг в вашем инжекторе появились какие-то неисправности, то самостоятельно вы с ремонтом не справитесь. Лучше отогнать автомобиль в автосервис.

Инжектор (форсунка) – это элемент системы впрыска горючей смеси в двигатель транспортного средства. Иногда под понятием «инжектор» подразумевается вся система впрыска топлива.



Его предназначение – подача топлива дозами к двигателю, распыление топлива, приготовление воздушно-топливной смеси. Сегодня инжекторы устанавливают в системы впрыска двигателей большинства современных автомобилей, и бензиновых, и дизельных.

1. Виды инжекторов

Различают такие виды инжекторов по способу впрыска горючей смеси:

Электромагнитные.

Электрогидравлические.

Пьезоэлектрические.

Рассмотрим более детально каждый из видов.

Электромагнитный инжектор – обычно, такие инжекторы ставят на бензиновые двигатели (также и на те, что имеют систему непосредственного впрыска). Устройство этого типа инжекторов очень простое и включает сопло, электромагнитный клапан и иглу.

Процесс работы электромагнитного инжектора можно описать следующим образом. В нужный момент электронный блок подаёт напряжение на обмотку клапана. Создаётся электромагнитное поле, преодолевающее силу пружины и втягивающее якорь с иглой, что освобождает сопло. Потом производится впрыск топлива. Во время исчезновения напряжения, игла инжектора возвращается в исходное положение с помощью пружины.

Электрогидравлический инжектор – обычно, используют в дизельных двигателях (также в тех, которые оборудованы системой для впрыска Common Rail). Конструкция такого инжектора соединяет электромагнитный клапан, камеру управления, дроссели (впускной и сливной).

Электрогидравлические инжекторы работают на основе использования давления топлива во время впрыска и при его прекращении. По умолчанию клапан закрыт, а игла прижата к седлу давлением топлива на поршень. При этом впрыск не происходит, а давление на игле будет меньше давления, передаваемого на поршень. По сигналу из электронного блока открывается сливной дроссель, так как срабатывает электромагнитный клапан.

Топливо при этом течёт в сливную магистраль, а впускной дроссель не может быстро выровнять давление во впускной магистрали и камере управления. Из-за этого снижается давление на поршень. Что касается давления на иглу, то оно не меняется. Под действием такого давления игла поднимается и топливо впрыскивается.

Пьезоэлектрический инжектор – на сегодня это самый продвинутый прибор для впрыска топлива. Такой вид инжекторов устанавливают на дизельных двигателях с системой Common Rail. Они управляются с использование пьезоэффекта, основанном на том, что длина пьезокристалла меняется под напряжением.

Конструктивно пьезоэлектрический инжектор из пьезоэлемента и толкателя (переключает клапан и иглу в корпусе).

В основе работы этого вида инжекторов использован гидравлический принцип. В начальном положении игла за счёт давления топлива, посажена на седло. Когда на пьезоэлемент поступает сигнал, то его длина увеличивается, и он даёт усилие на толкатель , при чём происходит открытие клапана, и топливо идёт в сливную магистраль. Давление на иглу в верхней части падает, а за счёт давления в нижней части, игла поднимается и топливо впрыскивается. Количество топлива, которое нужно впрыснуть, определяется исходя из давления топлива в топливной рампе и длительности действия на пьезоэлемент.

Пьезоинжекторы срабатывают быстрее в четыре раза, нежели электромагнитные, что даёт возможность многократно впрыска в один цикл и точечной дозировки топлива.

Системы впрыска топлива в зависимости от количества инжекторов и мест подачи топлива подразделяются на такие виды:

Одноточечные (моновпрыск) – во впускном коллекторе предусмотрено всего один инжектор на все цилиндры.

Многоточечные (распределённые) – у каждого отдельного цилиндра присутствует индивидуальный инжектор, осуществляющий подачу топлива коллектору.

Непосредственные (прямого впрыска) – подача топлива осуществляется прямо в цилиндры при помощи инжекторов. Системы непосредственного впрыска дают самый лучший результат работы двигателя

2. Основные элементы инжекторной системы и принцип работы

Инжекторная система состоит из таких элементов:

Электрический бензонасос (осуществляет подачу топлива на инжектор).

Регулятор давления (даёт возможность поддерживать разницу в давлении на инжекторах и воздуха впускного коллектора).

Контроллер (делает обработку информации от разных датчиков и управляет системой зажигания и подачи топлива).

Датчики (передают контроллеру необходимую информацию для работы всей системы; в систему входят датчики детонации, температуры, коленчатого вала и т. д.). Инжектор (осуществляет впрыск топлива в двигательную систему).

Главными составляющими инжектора являются топливный фильтр, пружина, якорь, игла, штифт, электромагнитная обмотка, корпус, электрический контакт и уплотнительное кольцо. Самый важный элемент инжектора (форсунки) – сопло.

Рассмотрим принцип работы инжекторной системы.



Бензонасос создаёт давление и топливо, под этим давлением, подаётся на инжекторы. Клапан инжектора открывается и топливо попадает в коллектор (либо сразу в цилиндр, если впрыск прямой). Чем дольше клапан находится в открытом состоянии, тем большее количество топлива впрыскивается в цилиндр и, тем выше будут обороты двигателя. Длительностью открытия клапана управляет контроллер на основе информации, полученной из датчиков.

Эти датчики собирают информацию о всех параметрах работы двигателя – оборотах коленвала, температуре жидкости для охлаждения, расходе воздуха, скорости движения автомобиля , степени открытия дросселя, детонации, напряжении бортовой сети и других. Вся эта информация помогает выбрать самый оптимальный режим работы двигателя в любых условиях нагрузки.

За инжектором обязательно нужно ухаживать, чтобы он исправно работал. Во-первых, его регулярно нужно промывать (каждые 20-25 тыс. км), а во-вторых – заправлять автомобиль качественным бензином. Если долго не промывать инжектор, он может закоксоваться и тогда его вовсе придётся поменять. Содержание в топливе примесей и смол также не пойдёт на пользу инжекторам.

3. Краткая история инжектора

Принципы работы двигателя с инжекторной системой были известными ещё в конце 19 века, но ввиду сложной конструкции о таких двигателях долгое время не вспоминали.



Применение инжекторов в системах впрыска обусловил топливный кризис в 70-х годах и всеобщее внимание к окружающей среде в 80-х годах прошлого века. Карбюраторные двигатели выбрасывали в воздух очень много вредных отработанных веществ из-за сильного обогащения горючей смеси. Для уменьшения количества этих выбросов нужно было полностью менять двигательную систему.

Считается, что инжекторная система впрыска топлива родилась в 1951 году, когда корпорация Bosch установила такую систему на двухтактный двигатель Goliath 700 Sport. В 1954 году подобную систему установили на Mercedes-Benz 300 SL. А в 1967 году создали первый инжектор с электронным управлением.

Первые инжекторные двигатели были очень капризными и имели сложную механику. Зато такие отличались экологичностью и тяговитостью, а по своим характеристикам во многих аспектах превосходили карбюраторные системы.



Массовое же внедрение инжекторов началось с конца 70-х годов 20 века. Настоящий же «золотой век» инжекторов наступил в конце 20-го века с приходом электроники в автомобилестроение.

Сегодня двигатели с карбюраторными системами уже стали архаизмом. Современные транспортные средства оснащаются инжекторными системами впрыска топлива. Первые десять лет 21-го века почти завершили вытеснение карбюраторов в пользу инжекторов.

4. Плюсы и минусы инжекторов



Плюсы инжекторных систем:

Уменьшают расходы топлива благодаря правильной дозировке топлива.

Выхлопные газы с такими системами менее токсичны вследствие верно приготовленной воздушно-топливной смеси.

Повышают мощность двигателя на 8-10% (цилиндры наполняются более объёмно, а угол опережения зажигания установлен оптимально).

Система в автоматическом режиме корректирует параметры смеси при изменении нагрузок.

Не зависит от погодных условий.

Легко приводится в действие.



Минусы инжекторных систем:

Невысокая ремонтопригодность элементов системы в случае её поломки.

Высокая стоимость отдельных узлов системы и её ремонта.

Подписывайтесь на наши ленты в

В данной статье будет рассмотрен принцип работы инжектора и всех его основных узлов. Это достаточно перспективная система, которая на данный момент используется на всех автомобилях, независимо от их ценовой группы. Но ведь не стоит забывать о том, что впервые такие конструкции начали использоваться массово в 70-х и 80-х годах. Причем поначалу инжекторы были без использования электронных компонентов. Конечно, они могли присутствовать, но в минимальном количестве. Также стоит провести сравнение инжекторной и карбюраторной системы впрыска топлива.

Карбюратор против инжектора

Пожалуй, среди поклонников карбюратора остаются лишь те, которые любят стартовать со светофора. Причина - карбюратор позволяет на низах развить большой крутящий момент и мощность. Инжекторная система впрыска, даже идеально настроенная, рядом не стоит. Простота карбюратора и стоимость обслуживания тоже дают небольшое преимущество. Но вот что касается мощности и крутящего момента на высоких оборотах, то инжектор здесь выигрывает, причем с большим отрывом. Другими словами, при совершении обгона ваш автомобиль более приемистым будет в том случае, если установлен инжекторный впрыск. Также имеется возможность увеличения мощности путем установки турбины - устройства, способного нагнетать в систему впрыска воздуха. За счет этого повышается мощность двигателя во много раз. Конечно же, страдает ресурс, но чем не пожертвуешь ради эффектной езды?

Этапы развития инжекторного впрыска


На знаменитых «сигарах» «Ауди 100» использовался механический инжектор. Принцип работы его можно сравнить с системой топливоподачи в дизельных моторах. При помощи механического насоса и такого же привода форсунок производилась подача топливовоздушной смеси в камеры сгорания. Конечно, нельзя не упомянуть и о переходном звене - карбюраторах с электронным управлением. Использовались они на малом количестве автомобилей, причем исключительно японского производства. Жители Страны восходящего солнца очень любят разнообразные электронные гаджеты и по сей день. Но электронные карбюраторы были недолго популярны, в конце 80-х началась их эра и моментально закончилась. Между прочим, на автомобилях ВАЗ-2110, например, устанавливались карбюраторы без тросика «подсоса». Регулировка подачи воздуха осуществлялась автоматически, при помощи специальной заслонки, которая меняла свое положение по мере прогрева двигателя. Но сегодня большую популярность получили инжекторы, конструкции которых стали уже классическими. Вот их и стоит рассмотреть более детально, разобрать по составляющим.

Топливный насос


Это сердце всей топливной системы, так как с его помощью происходит циркуляция бензина. Состоит он из следующих элементов:

  1. Фильтр (в народе называется он «памперс», так как имеет завидное сходство).
  2. Электродвигатель постоянного тока.
  3. Помпа, приводимая в движение двигателем.
  4. Датчик уровня (конструктивно он объединен с топливным насосом).

Располагается насос непосредственно в баке, крепится при помощи гаек. Доступ к нему можно получить, если поднять заднее сиденье. Во всех автомобилях, будь то старенькая «десятка» либо же новая «японка», находится бензонасос именно под сиденьем. Конечно, снятие и установка будут производиться на всех машинах по-разному. От насоса к рампе проложена топливная магистраль. Она должна выдерживать большое давление, поэтому всегда следите за ее состоянием. Параллельно этой магистрали прокладывается трубка, которая возвращает избытки бензина обратно в бак. Довольно прост принцип работы бензонасоса. Инжектор функционирует за счет избыточного давления, создаваемого помпой.

Топливная рампа


Она устанавливается непосредственно на двигателе. Ее миссия заключается в том, чтобы удерживать в себе смесь бензина и воздуха под определенным давлением. Именно в ней происходит процесс соединения двух составляющих горючей смеси - бензина и воздуха. Причем пропорция всегда должна быть одинаковой - 14 частей воздуха на одну бензина. Только в таком случае двигатель будет работать максимально устойчиво, стабильно, экономично. К рампе произведено подключение таких механизмов, как дроссельная заслонка, электромагнитные форсунки, клапан сброса. Между прочим, именно в топливной рампе производится установка датчика давления топлива. Но про него и все остальные электронные компоненты будет рассказано дальше. Стоит заметить, что инжектор Вентури, принцип работы которого аналогичен рассмотренной в статье системе, имеет очень широкое применение, причем не только в автомобилях.

Форсунки


При помощи этих устройств производится подача топливовоздушной смеси в камеры сгорания всех цилиндров. Что же это за механизмы? Если вы знаете сносно конструкцию карбюраторов, то вспомните про электромагнитный клапан. Вот именно у него конструкция очень похожа на ту, которую вы можете видеть у форсунок. У них имеется обмотка, на которую подается постоянное напряжение. Игольчатый клапан при подаче напряжения открывает путь для прохождения топлива. Вся эта смесь под давлением распыляется в камеры сгорания. Обратите внимание, что форсунки должны распылять топливо таким образом, чтобы оно заполняло как можно больше камеру сгорания. Прост в понимании принцип работы форсунки инжектора, с ее помощью производится распыление. Топливовоздушная смесь в этот момент похожа на туман, в определенном объеме воздуха бензин находится во взвешенном состоянии. Следовательно, воспламенение происходит намного быстрее и лучше, нежели в случае с карбюраторной системой.

Дроссельная заслонка


Откройте капот автомобиля и внимательно посмотрите, что находится под ним. Вы увидите воздушный фильтр, который обычно прикручен к «телевизору» - передней части машины. От него идет небольшой патрубок, соединенный с отрезком пластиковой трубы, к которому подключены провода. Это датчик, который измеряет расход двигателем воздуха. А вот после него находится заслонка. С ее помощью происходит регулировка подачи воздуха в топливную рампу. Но тут нужно взглянуть на принцип работы инжектора. Ведь необходимо заметить, что при полностью закрытой заслонке небольшая часть воздуха все равно поступает в топливную систему, чтобы обеспечить оптимальное значение числа оборотов двигателя. И происходит это при помощи одного специфического исполнительного механизма - регулятора холостого хода (неправильно его называть датчиком, так как это шаговый электродвигатель, он никаких измерений не производит). Этот механизм открывает и закрывает при необходимости канал, по которому поступает воздух в топливную рампу.

Электронный блок управления


Без этого элемента инжекторной системы впрыска двигатель работать не сможет. Впрочем, иногда, даже если он и стоит, то это вовсе не означает, что двигатель будет заводиться и отменно работать. А дело все в том, что электронный блок управления построен на микропроцессоре. И он специально программируется для работы в качестве модуля управления всеми исполнительными устройствами на основании данных, полученных от датчиков. Следовательно, электронный блок управления должен иметь программу, написанную по определенному алгоритму. Причем этот алгоритм должен быть четким, чтобы микроконтроллер точно знал, что ему необходимо сделать, если, например, появится сигнал с без которого не может существовать ни один современный инжектор. Принцип работы двигателя как с инжектором, так и с карбюратором остается неизменным.

Датчики в автомобиле


Чтобы правильно и своевременно подать топливо во все цилиндры, а также импульсы на электроды свечей зажигания, необходимо максимально точно считывать все параметры работы двигателя. В частности, важно знать, какая частота вращения у коленчатого вала. Также не помешают данные о том, какое давление в топливной рампе. Если же необходима остановка двигателя в автоматическом режиме при недостаточной смазке, то производится подключение датчика давления масла. При этом нужно прописывать его функции в алгоритме блока управления, конечно же, принцип работы инжектора в таком случае немного изменится. Также следует знать и про детонацию, ведь она многое может сказать о том, насколько правильно функционирует двигатель внутреннего сгорания. В современных автомобилях контролируется даже состав газа в выхлопной системе. Это происходит при помощи двух датчиков кислорода. И самое главное - это, конечно же, расход воздуха. Без знания этого параметра попросту невозможно осуществить правильное смесеобразование.

Заключение

Несмотря на кажущуюся сложность конструкции, принцип работы инжектора ВАЗ-2110, как и любого другого автомобиля, очень простой. Можно даже провести аналогию с обычным компрессором, оснащенным краскопультом. Конечно, это будет упрощенный вариант системы, форсунка только одна, блока управления сложного нет. Но суть примерно такая же. Проще разобраться с процессами, протекающими в двигателе с инжекторной системой впрыска, нежели исследовать разнообразные завихрения и перепады давления в карбюраторной. А если досконально изучить конструкцию, то вам не будет страшна никакая поломка датчиков всей системы управления.

Инжекторная система подачи топлива в автомобилях стала массово распространяться с 80-х годов . В их двигателях горючее в результате сжатия посредством форсунок-инжекторов под давлением впрыскивается в цилиндр или в коллектор впуска.

Инжекторная система подачи топлива

Чем хороша инжекторная система подачи топлива?

Время показало ее преимущества в сравнении с моторами, где топливо подается посредством карбюратора. Инжекторная схема мотора имеет немалые достоинства:

  1. в двигателях внутреннего сгорания меньше, что подтверждается инжекторной системой подачи топлива ВАЗ 2109;
  2. ДВС запускается проще, улучшаются его эксплуатационный режим;
  3. Система впрыска регулируется автоматически с помощью датчика кислорода;
  4. Отработанные газы содержат меньше углеводородов;
  5. При одинаковых объемах карбюраторного и инжекторного мотора у последнего мощность выше примерно на 10 %;
  6. В 2016 году производители автомобилей полностью отказались от карбюраторов в легковых и малых грузовых машинах.

Как работает инжектор?

Чтобы понять, как подается топливная смесь в инжекторный двигатель, необходимо представить себе устройство инжектора .

Обычно он состоит из:

  • Электробензонасоса;
  • Контроллера или электронного блока управления;
  • Регулятора давления;
  • Различных датчиков;
  • Собственно инжектора или форсунок.


Схема устройства инжекторной системы подачи топлива

Принцип работы инжектора достаточно прост. Контроллер анализирует поступающую от датчиков информацию и запускает бензонасос. Тот закачивает топливо в систему. С помощью регулятора давления обеспечиваются нужные параметры давления во впускном коллекторе и в инжекторах. Эти элементы хорошо работают в инжекторной системе подачи топлива ВАЗ 2107. Учитываются данные о положении и скорости вращения коленвала, расходе воздуха и другие. Электроника принимает решение о запуске двигателя и о том, как должен работать инжектор.

Принцип работы его основывается на четкой работе контроллера, который включает электромагнитный клапан форсунки с иглой. Он обеспечивает хорошее функционирование , подачи топлива, диагностики, и других. В результате впрыск происходит точно в нужный момент. При этом топливовоздушная эмульсия подается в нужном количестве и составе.

Какими бывают инжекторы?

От форсунок в решающей степени зависит подача топлива в инжекторном двигателе . Долгое время весьма распространенной была система моновпрыска, при которой через одну форсунку можно осуществлять впрыск во все цилиндры. Определенное время она существовала наряду с многоточечным впрыском.

Эти виды инжекторов развивались по-разному. Моновпрыск не соответствовал Евро-3, быстро устарел и встречается не часто. Сегодня доминирует более совершенная система, с помощью которой осуществляется распределенный впрыск топлива .

Здесь на коллектор впуска цилиндра ставится отдельная форсунка или посредством нее топливная смесь попадает непосредственно в камеру сгорания. Распределенный впрыск топливной смеси может быть:

  • Одновременным;
  • Попарно-параллельным;
  • Фазированным или последовательным.

Особого внимания требуют машины, на которые ставятся несовершенные инжекторные системы подачи топлива. «Газель» является одним из примеров тому. Замена карбюраторного двигателя на инжекторный порой не уменьшала большой расход топлива.

Особенности устройства инжекторного двигателя

С помощью встроенной системы диагностики происходит распознавание неполадки в двигателе, сигнализируя контрольной лампой, хранит коды диагностики неисправностей. Она располагает тремя запоминающими устройствами, позволяющими оперативно анализировать техническое состояние за разные периоды времени.

Принципиальной особенностью является наличие форсунок, которые обеспечивают дозированный впрыск топливовоздушной смеси во впускную трубу после получения команды от управляющего блока. При этом необходимый воздух подается при помощи дроссельного узла и регулятора холостого хода. Форсунки крепятся к рампе, которая установлена на впускной трубе.

Форсунка представляет собой электромеханический клапан, который при помощи пружины запирается иглой. Когда от блока управления подается на обмотку электромагнита форсунки импульс, игла поднимается, открывая сопло распылителя. Через него смесь подается во впускную трубу мотора. Форсунки требуют постоянного контроля. Малейшее их засорение может негативно сказаться на работе двигателя.


Устройство электромагнитной форсунки бензинового двигателя

Также важной частью этого двигателя является нейтрализатор, который преобразует вредные компоненты отработанных газов.

Основные системы

Сегодня большинство легковых автомобилей имеют инжекторный двигатель. Устройство его помимо блока управления и нейтрализатора предполагает наличие некоторых других важных систем. Среди них системы зажигания, подачи топлива и улавливания паров бензина.

Первая предусматривает наличие расположенного в топливном баке двухступенчатого электробензонасоса, фильтра для очистки топлива, топливопроводов и форсунок вместе с регулятором давления топлива. Фильтр расположен на топливной магистрали между топливной рампой и бензонасосом.

Например, в инжекторной системе подачи топлива ВАЗ 2110 не предполагаются наличия обычной катушки зажигания и распылителя в системе зажигания. В ней используется модуль и две катушки зажигания. Управляется она контроллером. Искра образуется одновременно в двух цилиндрах методом «холостой искры». Система не нуждается в обслуживании и регулировках.

Пары бензина улавливаются при помощи угольного адсорбера, устанавливаемого в моторном отсеке и соединенным с бензобаком и патрубком дросселя трубопроводами. Сверху этого устройства смонтирован электромагнитный клапан. При неработающем двигателе он закрыт.

Когда мотор запускается, он открывается. Блок управления посылает сигнал, воздухом продувается адсорбер. Бензиновые пары попадают в дроссельный патрубок, после чего сжигаются в цилиндрах.

Зачем нужны датчики?

Работа инжектора невозможна без наличия различных датчиков, которые сообщают контроллеру необходимую информацию. Работа датчиков инжекторного двигателя позволяет контролировать параметры работы мотора, предупредить его поломки.