Электронный ток в вакууме. Ток, электрический ток в вакууме

Движение заряженных свободных частиц, полученных в результате эмиссии, в вакууме под действием электрического поля

Описание

Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии (от латинского emissio - выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj . Соответственно потенциальная энергия электрона уменьшается на e Dj .

Распределение потенциальной энергии электрона U для ограниченного металла показано на рис. 1.

Диаграмма потенциальной энергии электрона U в ограниченном металле

Рис. 1

Здесь W0 - уровень энергии покоящегося электрона вне металла, F - уровень Ферми (значение энергии, ниже которой все состояния системы частиц (фермионов), при абсолютном нуле заняты), E c - наименьшая энергия электронов проводимости (дно зоны проводимости). Распределение имеет вид потенциальной ямы, ее глубина e Dj =W 0 - E c (электронное сродство); Ф = W 0 - F - термоэлектронная работа выхода (работа выхода).

Условие вылета электрона из металла: W і W 0 , где W - полная энергия электрона внутри металла.

При комнатных температурах это условие выполняется лишь для ничтожной части электронов, значит, для увеличения числа покидающих металл электронов необходимо затратить определенную работу, то есть сообщить им дополнительную энергию, достаточную для вырывания из металла, наблюдая электронную эмиссию: при нагревании металла - термоэлектронную, при бомбардировке электронами или ионами - вторичную, при освещении - фотоэмиссию.

Рассмотрим термоэлектронную эмиссию.

Если испущенные раскаленным металлом электроны ускорить электрическим полем, то они образуют ток. Такой электронный ток может быть получен в вакууме, где столкновения с молекулами и атомами не мешают движению электронов.

Для наблюдения термоэлектронной эмиссии может служить пустотная лампа, содержащая два электрода: один в виде проволоки из тугоплавкого материала (молибден, вольфрам и др.), накаливаемый током (катод), и другой, холодный электрод, собирающий термоэлектроны (анод). Аноду чаще всего придают форму цилиндра, внутри которого расположен накаливаемый катод.

Рассмотрим схему для наблюдения термоэлектронной эмиссии (рис. 2).

Электрическая схема для наблюдения термоэлектронной эмиссии

Рис. 2

Цепь содержит диод Д , подогреваемый катод которого соединен с отрицательным полюсом батареи Б , а анод - с ее положительным полюсом; миллиамперметр mA , измеряющий силу тока через диод Д , и вольтметр V, измеряющий напряжение между катодом и анодом. При холодном катоде тока в цепи нет, так как сильно разряженный газ (вакуум) внутри диода не содержит заряженных частиц. Если катод раскалить с помощью дополнительного источника, то миллиамперметр зарегистрирует появление тока.

При постоянной температуре катода сила термоэлектронного тока в диоде возрастает с увеличением разности потенциалов между анодом и катодом (см. рис. 3).

Вольтамперные характеристики диода при различных температурах катода

Рис. 3

Однако эта зависимость не выражается законом аналогичным закону Ома, по которому сила тока пропорциональна разности потенциалов; эта зависимость носит более сложный характер, графически представленный на рисунке 2, например, кривой 0-1-4 (вольтамперная характеристика). При увеличении положительного потенциала анода сила тока возрастает в соответствии с кривой 0-1, при дальнейшем возрастании анодного напряжения сила тока достигает некоторого максимального значения i н , называемого током насыщения диода, и почти перестает зависеть от анодного напряжения (участок кривой 1-4).

Качественно такая зависимость тока диода от напряжения объясняется следующим образом. При разности потенциалов равной нулю сила тока через диод (при достаточном расстоянии между электродами) тоже равна нулю, так как электроны, покинувшие катод, образуют вблизи него электронное облако, создающее электрическое поле, тормозящее вновь вылетающие электроны. Эмиссия электронов прекращается: сколько электронов покидает металл, столько же в него возвращается под действием обратного поля электронного облака. При увеличении анодного напряжения концентрация электронов в облаке уменьшается, тормозящее действие его уменьшается, анодный ток увеличивается.

Зависимость силы тока диода i от анодного напряжения U имеет вид:

где a - коэффициент, зависящий от формы и расположения электродов.

Это уравнение описывает кривую 0-1-2-3, и носит название закона Богуславского - Лэнгмюра или “закона 3/2”.

Когда потенциал анода становится настолько большим, что все электроны, покидающие катод за каждую единицу времени, попадают на анод, ток достигает максимального значения и перестает зависеть от анодного напряжения.

При увеличении температуры катода вольтамперная характеристика изображается кривыми 0-1-2-5, 0-1-2-3-6 и т.д., то есть при разных температурах различными оказываются значения тока насыщения i н , которые быстро увеличиваются с возрастанием температуры. Одновременно увеличивается анодное напряжение, при котором устанавливается ток насыщения.

Вакуум – состояние разреженного газа, при котором длина свободного пробега молекул λ больше размеров сосуда d, в котором находится газ.

Из определения вакуума следует, что между молекулами практически отсутствует взаимодействие, поэтому ионизация молекул произойти не может, следовательноно, свободных носителей заряда в вакууме получить нельзя, поэтому - электрический ток в нем невозможен;
Чтобы создать электрический ток в вакууме, нужно в него поместить источник свободных заряженных частиц. В вакуум помещают металлические электроды, подключенные к источнику тока. Один из них нагревают (он называется катодом), в результате чего происходит процесс ионизации, т.е. из вещества вылетают электроны, образуются положительные и отрицательные ионы. Действие такого источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

Термоэлектронная эмиссия – это процесс испускания электронов с нагретого катода. Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака, электроны из облака частично возвращаются на электрод. В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака. Работа, которую должен совершить электрон, чтобы покинуть металл, получила название работы выхода А вых.

[А вых ] = 1 эВ

1 эВ – это энергия, которую приобретает электрон, двигаясь в электрическом поле между точками с разностью потенциалов в 1 В.

1 эВ = 1,6*10 -19 Дж

Различие между температурами горячих и холодных электродов, впаянных в сосуд, из которого откачан воздух, приводит к односторонней проводимости электрического тока между ними.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединен с холодным электродом (анодом), а отрицательный – с нагретым (катодом), то вектор напряженности электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника, напряженность поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.


Устройство, которое обладает односторонней проводимостью электрического тока называется вакуумный диод. Состоит из электронной лампы (сосуда), из которой выкачан воздух и в котором находятся электроды, подключенные к источнику тока. Вольтамперная характеристика вакуумного диода. Подписать участки ВАХ пропускной режим диода и закрытый?? При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод используется для выпрямления переменного электрического тока. В настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Электронный пучок – это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков:
- отклоняются в электрических полях;
- отклоняются в магнитных полях под действием силы Лоренца;
- при торможении пучка, попадающего на вещество возникает рентгеновское излучение;
- вызывает свечение (люминисценцию) некоторых твердых и жидких тел;
- нагревают вещество, попадая на него.

Электронно-лучевая трубка (ЭЛТ).
В ЭЛТ используются явления термоэлектронной эмиссии и свойства электронных пучков.

В электронной пушке электроны, испускаемые подогреваемым катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.


Существуют два вида трубок:
1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь электрическим полем);
2) с электромагнитным управлением (добавляются магнитные отклоняющие катушки).
В электронно-лучевых трубках формируются узкие электронные пучки, управляемые электрическими и магнитными полями. Эти пучки используются в: кинескопах телевизоров, дисплеях ЭВМ, электронных осциллографах в измерительной технике.

Урок № 40-169 Электрический ток в газах. Электрический ток в вакууме.

В обычных условиях газ - это диэлектрик (R), т.е. состоит из нейтральных атомов и молекул и не содержит свободных носителей электрического тока. Газ-проводник - это ионизированный газ, он обладает электронно-ионной проводимостью. Ионизация газа - это распад нейтральных атомов или молекул на положительные ионы и электроны под действием ионизатора (ультрафиолетовое, рентгеновское и радиоактивное излучения; нагрев) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях. Газовый разряд – прохождение электрического тока через газ. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц

Газ перестает быть проводником, если ионизация прекращается, это происходит вследствие рекомбинации (воссоединения противоположно заряженных частиц). Виды газовых разрядов: самостоятельный и несамостоятельный.

Несамостоятельный газовый разряд - это разряд, существующий только под действием внешних ионизаторов Газ в трубке ионизирован, на электроды подается напряже­ние (U) и в трубке возникает электрический ток(I). При увеличении U возрастает сила тока I Когда все заряженные частицы, образующиеся за секунду, достигают за это время электро­дов (при некотором напряжении (U*), ток достигает насыщения (I н). Если действие иони­затора прекращается, то прекращается и разряд (I= 0).Самостоятельный газовый разряд - разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации электрического удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина). При некотором значении напряжения (U пробоя) сила тока снова возрастает. Ионизатор уже не нужен для поддер­жания разряда. Происходит ионизация электронным ударом . Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при U а = U зажигания.Электрический пробой газа - переход несамостоятельного газового разряда в самостоятельный. Типы самостоятельного газового разряда: 1. тлеющий - при низких давлениях (до нескольких мм рт.ст.) - наблюдается в газосветных трубках и газовых лазерах. (лампы дневного света) 2. искровой - при нормальном давлении (P = P атм )и высокой напряженности электрического поля Е (молния - сила тока до сотен тысяч ампер). 3. коронный - при нормальном давлении в неоднородном электрическом поле (на острие, огни святого Эльма).

4. дуговой - возникает между близко сдвинутыми электродами - большая плотность тока, малое напряжение между электродами, (в прожекторах, проекционной киноаппаратуре, сварка, ртутные лампы)

Плазма - это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера – слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма – в газоразрядных лампах. Плазма бывает: 1. - низкотемпературная Т 10 5 К. Основные свойства плазмы: - высокая электропроводность; - сильное взаимодействие с внешними электрическими и магнитными полями. При Т = 20∙ 10 3 ÷ 30∙ 10 3 К любое вещество - плазма. 99% вещества во Вселенной - плазма.

Электрический ток в вакууме.

Вакуум – сильно разреженный газ, соударений молекул практически нет, длина свободного пробега частиц (расстояние между столкновениями) больше размеров сосуда (Р « Р~10 -13 мм рт. ст.). Для вакуума характерна электронная проводимость (ток – движение электронов), сопротивление практически отсутствует (R

). В вакууме: - электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность; - создать электрический ток в вакууме можно, если использовать источник заряженных частиц; - действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии. Термоэлектронная эмиссия - явление вылета свободных электронов с поверхности нагретых тел, испускание электронов твердыми или жидкими телами происходит при их нагревании до температур, соответствующих видимому свечению раскаленного металла. Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно). Чем выше температура металла, тем выше плотность электронного облака. Электрический ток в вакууме возможен в электронных лампах. Электронная лампа - устройство, в котором применяется явление термоэлектронной эмиссии.



Вакуумный диод.

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа. Внутри стеклянного баллона создается очень низкое давление (10 -6 ÷10 -7 мм рт. ст.), Нить накала, помещена внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с “+” источника тока, а катод с “–”, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая электрический ток в вакууме.

ВАХ (вольтамперная характеристика) вакуумного диода.

При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод обладает односторонней проводимостью и используется для выпрямления переменного тока.

Электронные пучки - это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах. Свойства электронных пучков: - отклоняются в электрических полях; - отклоняются в магнитных полях под действием силы Лоренца; - при торможении пучка, попадающего на вещество, возникает рентгеновское излучение; - вызывает свечение (люминесценцию) некоторых твердых и жидких тел (люминофоров); - нагревают вещество, попадая на него.

Электронно - лучевая трубка (ЭЛТ)

- используются явления термоэлектронной эмиссии и свойства электронных пучков. Состав ЭЛТ: электронная пушка, горизонтальные и вертикальные отклоняющие пластины-электродов и экран. В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами. Существуют два вида трубок: 1. с электростатическим управлением электронного пучка (отклонение электронного пучка только электрическим полем) 2. с электромагнитным управлением (добавляются магнитные отклоняющие катушки). Основное применение ЭЛТ: кинескопы в телеаппаратуре; дисплеи ЭВМ; электронные осциллографы в измерительной технике. Экзаменационный вопрос 47. В каком из перечисленных ниже случаев наблюдается явление термоэлектронной эмиссии? А. Ионизация атомов под действием света. Б. Ионизация атомов в результате столкнов ений при высокой температуре. В. Испускание электронов с поверхности нагретого катода в телевизионной трубке. Г. При прохождении электрического тока через раствор электролита.

Любой ток появляется только при наличии источника со свободными заряженными частицами. Это связано с тем, что в вакууме отсутствуют какие-либо вещества, в том числе и электрические заряды. Поэтому вакуум считается самым лучшим . Для того, чтобы в нем стало возможным прохождение электрического ток а, нужно обеспечить наличие в достаточном количестве свободных зарядов. В этой статье мы рассмотрим что представляет собой электрический ток в вакууме.

Как электрический ток может появиться в вакууме

Для того, чтобы создать в вакууме полноценный электрический ток, необходимо использовать такое физическое явление, как термоэлектронная эмиссия. Она основана на свойстве какого-либо определенного вещества испускать при нагревании свободные электроны. Такие электроны, выходящие из нагретого тела, получили название термоэлектронов, а все тело целиком называется эмиттером.

Термоэлектронная эмиссия лежит в основе работы вакуумных приборов, более известных, как электронные лампы. В самой простейшей конструкции содержится два электрода. Один из них катод, представляет собой спираль, материалом которой служит молибден или вольфрам. Именно он накаливается электрическим ток ом. Второй электрод называется анодом. Он находится в холодном состоянии, выполняя задачу по сбору термоэлектронов. Как правило, анод изготавливается в форме цилиндра, а внутри его размещается нагреваемый катод.

Применение ток а в вакууме

В прошлом веке электронные лампы играли ведущую роль в электронике. И, хотя, их давно уже заменили полупроводниковые приборы, принцип работы этих устройств применяется в электронно-лучевых трубках. Данный принцип используется при сварочных и плавильных работах в вакууме и других областях.


Таким образом, одной из разновидностей ток а, является электронный по ток, протекающий в вакууме. При накаливании катода, между ним и анодом появляется электрическое поле. Именно оно придает электронам определенное направление и скорость. По этому принципу работает электронная лампа с двумя электродами (диод), которая широко применяется в радиотехнике и электронике.


Устройство современного представляет собой баллон из стекла или металла, откуда предварительно откачан воздух. Внутрь этого баллона впаиваются два электрода катод и анод. Для усиления технических характеристик устанавливаются дополнительные сетки, с помощью которых увеличивается по ток электронов.

Электрический ток - упорядоченное движение электрозарядов. Его можно получить, например, в проводнике, который соединяет заряженное и незаряженное тело. Однако этот ток прекратится, как только разность потенциалов этих тел станет нулевой. Упорядоченное движение зарядов (электрический ток) будет существовать также в проводнике, соединяющем пластины заряженного конденсатора. В этом случае ток сопровождается нейтрализацией зарядов, находящихся на пластинах конденсатора, и продолжается, пока разность потенциалов пластин конденсатора не станет нулевой.

Эти примеры показывают, что электрический ток в проводнике возникает лишь при наличии на концах проводника разных потенциалов, т. е. тогда, когда в нем есть электрическое поле.

Но в рассмотренных примерах ток не может быть длительным, так как в процессе перемещения зарядов потенциалы тел быстро выравниваются и электрическое поле в проводнике исчезает.

Следовательно, для получения тока необходимо поддерживать на концах проводника разные потенциалы. Для этого можно переносить заряды с одного тела на другое обратно по другому проводнику, образуя для этого замкнутую цепь. Однако под действием сил этого же электрического поля такой перенос зарядов невозможен, так как потенциал второго тела меньше потенциала первого. Поэтому перенос возможен только силами неэлектрического происхождения. Наличие таких сил обеспечивает источник тока, включаемый в цепь.

Силы, действующие в источнике тока, переносят заряд от тела с меньшим потенциалом к телу с большим потенциалом и совершают при этом работу. Следовательно, должен обладать энергией.

Источниками тока являются гальванические элементы, аккумуляторы, генераторы и т. д.

Итак, основные условия возникновения электрического тока: наличие источника тока и замкнутой цепи.

Прохождение тока в цепи сопровождается рядом легконаблюдаемых явлений. Так, например, в некоторых жидкостях при прохождении по ним тока наблюдается выделение вещества на электродах, опущенных в жидкость. Ток в газах часто сопровождается свечением газов и т. д. Электрический ток в газах и вакууме изучал выдающийся французский физик и математик - Андре Мари Ампер, благодаря которому мы теперь знаем природу таких явлений.

Как известно, вакуум - наилучший изолятор, т. е. пространство, из которого выкачан воздух.

Но можно получить электрический ток в вакууме, для чего необходимо внести в него носители зарядов.

Возьмем сосуд, из которого откачан воздух. В этот сосуд впаяны две металлические пластины - два электрода. Один из них A (анод) соединим с положительным источником тока, другой K (катода) - с отрицательным. Напряжение между достаточно приложить 80 - 100 В.

Включим в цепь чувствительный миллиамперметр. Прибор не показывает никакого тока; это указывает на то, что электрический ток в вакууме не существует.

Видоизменим опыт. В качестве катода впаяем в сосуд проволочку - нить, с выведенными наружу концами. Эта нить по-прежнему останется катодом. С помощью другого источника тока накалим ее. Мы заметим, что, как только нить накаляется, прибор, включенный в цепь, показывает электрический ток в вакууме, и тем больший, чем сильнее накалена нить. Значит, нить при нагревании обеспечивает наличие в вакууме заряженных частиц, она является их источником.

Как заряжены эти частицы? Ответ на этот вопрос может дать опыт. Переменим полюсы у впаянных в сосуд электродов - нить сделаем анодом, а противоположный полюс - катодом. И хотя нить накалена и посылает заряженные частицы в вакуум, тока нет.

Из этого следует, что эти частицы заряжены отрицательно, потому что они отталкиваются от электрода А, когда он заряжен отрицательно.

Что представляют собой эти частицы?

Согласно электронной теории, свободные электроны в металле находятся в хаотическом движении. При накале нити это движение усиливается. При этом некоторые электроны, приобретая энергию, которой достаточно для совершения выхода, вылетают из нити, образуя около нее «электронное облачко». Когда между нитью и анодом образуется электрическое поле, то электроны летят к электроду А, если он присоединен к положительному полюсу батареи, и отталкиваются обратно к нити, если он присоединен к отрицательному полюсу, т. е. имеет заряд, одноименный с электронами.

Итак, электрический ток в вакууме - это направленный поток электронов.