Дистанционное управление насосом. Радиотехническая система дистанционного управления

Сидел я значит на работе жарким июльским днем. Подходит ко мне сотрудник и просит собрать ему дистанционное устройство, чтобы можно было включать и выключать стерео усилитель корвет 100у-068с, который по счастливому случаю мне совсем недавно приходилось реанимировать.

Ну далеко я не полез, взял простую схему ДУ на инфракрасных светодиодах довольно распространенную в интернете (я нашел схему на сайте vrtp.ru) и переделал ее под себя. Переделка заключалась в использовании стабилизаторов напряжения и оптимизация конструкции под 1 реле вместо трех. Основу схемы составляет микроконтроллер на PIC12F629, довольно распространенный и не дорогой микроконтроллер. Ниже приведена авторская статья.

Ниже приводится описание универсальной системы ДУ, способной управлять тремя объектами посредством трехкнопочного пульта. Каждая кнопка пульта имеет двоякое назначение — включение и выключение присвоенной ей нагрузки. То есть, каждое нажатие кнопки, например S1, изменяет состояние выхода «1» на противоположное.


Схема пульта показана на рисунке 1. В основе схемы микроконтроллер PIC12F629. Схема очень проста и легко может быть смонтирована в достаточно миниатюрном корпусе с тремя тумблерными кнопками. Источником питания может служить батарея из трех дисковых элементов по 1.5V достаточно большой емкости, например AG13.
В дежурном режиме, то есть когда нет передачи командного сигнала (когда не нажата ни одна из кнопок), контроллер, да и вся схема пульта, потребляет минимальный ток. Поэтому выключатель питания не требуется.
Командные посылки снимаются GP2 и поступают на токовый ключ на транзисторах VT1 и VT2. Нагрузкой ключа является ИК-светодиод HL1. Здесь использован отечественный светодиод АЛ147А, но можно использовать любой ИК-светодиод для пультов дистанционного управления.
Дальность подачи команды при свежей батарее и прицельном направлении HL1 на фотоприемник достигает 20 метров.

Схема приемника показана на рисунке 2. ИК-сигналы принимаются стандартным фотоприемником SFH506-38, настроенным на резонансную частоту 38 Кгц. Вместо фотоприемника SFH506-38 можно использовать любой интегральный фотоприемник для систем дистанционного управления аппаратурой, с частотой резонанса 36-40 кГц. Далее кодовая последовательность поступает на порт GP3 микроконтроллера PIC12F629, на котором выполнен декодер-исполнитель команд.
При приеме команды на включение на соответствующем порту возникает единица. Выходы микроконтроллера недостаточно мощны чтобы коммутировать обмотки реле или другие нагрузки. К тому же есть ограничение по напряжению +5V. Поэтому на выходах установлены транзисторные ключи VT1-VT3. Диоды VD1-VD3 защищают транзисторы от вывода из строя отрицательными обратными выбросами ЭДС при работе на индуктивную нагрузку.
К коллекторам VT1-VT3 можно подключать обмотки реле, светодиоды оптосимисторов (через соответствующие токоограничительные резисторы), управляющие входы электронных ключей. При работе с реле напряжение питания коллекторных цепей VT1-VT3 должно соответствовать номинальному рабочему напряжению обмоток реле, но для транзисторов КТ815А не превышать 35В. Если требуется большее напряжение питания исполнительного устройства (реле) нужно применить более высоковольтные транзисторы, например КТ940А.
HEX-файлы приведены в статье под соответствующими схемами.

Мои замечания и доработки.

У печаток передатчика и приемника, которые в архиве, присутствуют недочеты: у приемника печатная плата не предусматривает монтаж реле на плату, а расположение выводов силового транзистора передатчика некорректны (попутаны Б-К-Э см.рис.3 помечен красным овалом) что в какой-то мере создало неудобства.


Рис.3 — Печатная плата со стороны деталей ИК передатчика на 3 канала.

К тому же в виду того, что микроконтроллеры очень чувствительны к питающему напряжению я добавил стабилизатор напряжения на LM78L05 (с обвязкой я не заморачивался). Если вы будете использовать высоковольтные транзисторы, позаботьтесь о том, чтобы ток управления базой был достаточным для нормальной работы транзистора. Иначе у вас не будет срабатывать реле. Я решил эту проблему путем введения в схему дополнительного транзистора КТ3102 – включил его в параллель к выводам высоковольтного транзистора и все заработало. НУ КОНЕЧНО НЕ ЗАБЫВАЕМ ПРО ТОКИ КОЛЛЕКТОРОВ они не должны превышать допустимой величины.

Диоды VD1-VD3 — использовал импульсные диоды 4148 вместо КД-522.

Фотоприемник- купил на радио рынке стандартный под частоту 36-40 кГц.

Транзистор КТ-645 Е заменил на близкий по коэффициенту усиления. Вообще что я хочу сказать про h21э маломощных транзисторов совкового производства — это редкий случай удачи, найти заявленный коэффициент усиления. Так что смело берите от 400 и все будет хорошо. Все равно там все будет работать как часы.

Для питания приемной части использовал внутренности зарядного для телефона — (1) на рисунке 4, с выходным напряжением 5.8 В у вас может быть больше но не меньше, так как после блока стоит стабилизатор 78L05 (см.рисунок ниже) и на нем падает напряжение до 1В. При том что на мощных падает 1В, а на менее мощных 1.6В!! Что должно быть обязательно учтено при проектировании схемы. Приемный блок обведен зеленым цветом. Дальше идут фото изготовленного мной устройства.

Дальность работы устройства у меня составила 25 метров уверенного приема. Что в избытке покрывает потребность рядового жителя квартиры 🙂 Был произведен монтаж устройства непосредственно в усилитель. Задача решена. Человек рад, я был щедро отблагодарен за проделанную работу, рукопожатие — занавес!

Пользуйтесь дорогие товарищи! Все работает на ура!

Дистанционное электронное управление различными исполнительными устройствами - перспективное направление в радиотехнике, которое не теряет своей актуальности и сегодня. Вот одна реальная ситуация. Требуется автоматизировать подачу воды в дом, баню или другие строения приусадебного участка с помощью дистанционного управления. Дом находится на расстоянии 100... 150 м от деревенского колодца. Включение и отключение погружного насоса, установленного в колодце, осуществляется по радиоканалу. В основе устройства приобретённый в магазине Санкт-Петербурга беспроводной звонок с символической стоимостью 192 рубля.

Беспроводные звонки промышленного изготовления могут иметь различный внешний вид (фото 1), но в их составе обязательными элементами являются пульт-передатчик и приёмник радиосигнала. Как правило, такие беспроводные звонки работают на частоте 433 МГц и из-за очень малой мощности передатчика не создают помех и не влияют на работу другой бытовой техники.

Однако заявленная в паспортных данных дальность действия таких звонков почти всегда сильно завышена, иногда в 2,5 .3 раза. Так, если заявленная (указанная в паспорте) дальность составляет, например, 80 м, то реальная дистанция уверенного срабатывания звонка скорее всего будет не более 30 м. С увеличением же паспортной дальности всегда пропорционально возрастает и их цена. Например, беспроводной звонок с радиусом работы 100 м (реально - около 35 м) стоит уже более 1100 руб.

По сути, все равно, какой звонок использовать, так как его реальную «дальнобойность» практически всегда можно увеличить как минимум раза в 1,5...2, подключив внешнюю антенну. Поэтому рассмотрим самые «бюджетные» и простые варианты. Антенну приёмника трогать не стоит, поскольку на частоте радиосигнала 433 МГц увеличение её длины не приводит к существенному росту дистанции уверенной работы связки передатчик-приёмник.


На фото 2 представлены две разные по внешнему виду модели, но одинаковые по схемотехнике приёмники звонков со снятой крышкой. Схема у них одна, а исполнение - разное. В частности, тот, что на фото 2 слева - собран на дискретных элементах, а тот, что справа - на элементах в SMD-корпусах для поверхностного монтажа.



На рис. 1 приведена схема приёмника одного из самых простых и дешёвых беспроводных звонков. Вывод 10 микросхемы U1 имеет активный высокий уровень при поступлении радиосигнала с пульта-передатчика (когда у него нажата кнопка). Выводы 11 и 12 U1 наоборот имеют высокий уровень в состоянии покоя и низкий логический уровень - при поступлении от пульта-передатчика сигнала управления. Оба этих сигнала можно использовать для управления различными устройствами, если к приёмнику подключить несложную приставку.

ДОРАБОТКА ПРИЁМНИКА БЕСПРОВОДНОГО ЗВОНКА

Для того, чтобы устройство дистанционного управления насосом работало эффективно, например, при первом нажатии на кнопку пульта-передатчика подключало насос к сети 220 В, а при повторном нажатии - отключало его, потребуется собрать несложное устройство и подключить его к готовой плате приёмника беспроводного звонка. На рис. 2 приведена схема такого устройства, позволяющего включить и выключить насос, не прокладывая дополнительных проводов.

Погружной насос подключён параллельно лампе накаливания EL1, которая является световым индикатором. (Благодаря этому можно на расстоянии убедиться в том, что команда от передатчика получена, дистанционное устройство сработало, а насос включился.) Плату дополнительного устройства (рис.2) подключают к плате приёмника радиозвонка (рис.1) неэкранированными проводами типа МГТФ-0,4 (или аналогичными). При этом общий провод приставки подключают к минусу питания приёмника, а вход микросхемы DD1.1 (К1561ТМ2) к выводу 10 микроссхемы CD4069BD (в некоторых моделях - D4069UBC). Чтобы во время передачи сигнала управления не включался мелодичный звонок, достаточно отпаять один из проводников, ведущих к динамическому капсюлю.

Работает схема дополнительного устройства следующим образом. При включении питания в первый момент времени на вход R триггера DD1.1 благодаря разряженному конденсатору С2 поступает высокий логический уровень, который обнуляет триггер и на его прямом выходе Q (вывод 1 микросхемы DD1.1) устанавливается низкий логический уровень. Поэтому транзистор VT1 закрыт, реле К1 обесточено, лампа EL1 не горит, насос не работает.

Примерно через треть секунды после включения конденсатор С2 зарядится почти до напряжения питания и уровень на входе R триггера (вывод 4 DD1.1) изменится на низкий. Теперь он готов к приёму сигналов ло тактовому входу С, имеющему, как следует из схемы, низкий исходный уровень.

Когда с пульта-передатчика в эфир передаётся радиосигнал, он принимается приёмником звонка и на выводе 10 микросхемы U1 появляется высокий логический уровень, который поступает на вход С микросхемы DD1.1 дополнительного устройства. Вследствие этого триггер перебрасывается в другое устойчивое состояние - теперь на его прямом выходе Q (вывод 1 DD1.1) появляется высокий уровень напряжения. Транзистор VT1 включает реле К1, а его контакты в свою очередь замыкают электрическую цепь питания осветительной лампы EL1 и погружного насоса. В таком состоянии триггер может находиться сколь угодно долго, вплоть до прихода следующего положительного фронта импульса на вход С (следующего нажатия клавиши пульта-передатчика), который переключит триггер в исходное состояние. При этом осветительная лампа EL1 погаснет, а насос отключится.

Максимальная мощность нагрузки (насоса), которую можно подключить к данному устройству дистанционного управления, зависит от параметров электромагнитного реле К1 и для реле типа РЭС35 не должна превышать 350 Вт.

Все детали приставки легко размещаются на плате размерами 30x40 мм, которую вместе с соединительными проводами помещают в штатный корпус приёмника звонка в отсек для элементов питания. Для уменьшения электрических помех желательно, чтобы провода, соединяющие устройство с источником питания и идущие от реле К1 к насосу, имели сечение не менее 1,5 мм2 и были минимально возможной длины.

Постоянные резисторы - типа МЛТ-0,25 (MF-25). Оксидные конденсаторы - типа К50-26 на рабочее напряжение не менее 16 В. Остальные неполярные конденсаторы - типа КМ-6Б. Микросхема DD1 - типа К1561ТМ2, её можно заменить К561ТМ2 без ущерба для эффективности работы. Можно использовать и триггер К561ТМ1, но в этом случае придётся внести в схему соответствующие изменения. Транзистор VT1 - полевой типа КП540А с большим входным сопротивлением. Это позволяет минимизировать нагрузку на выход триггера микросхемы DD1, Вместо КП540А можно применить полевой транзистор любой из серии КП540 или его зарубежные аналоги BUZ11, IRF510, IRF521.

Реле К1 можно заменить на РЭС43 (исполнение РС4.569.201) или другое, рассчитанное на напряжение срабатывания

4...4,5 В и ток 10...50 мА. Устанавливать в устройство реле с током срабатывания более 100 мА нежелательно. Светодиод HL1 - любой, с его помощью удобно контролировать срабатывание реле. При необходимости элементы HL1 и R3 из схемы можно исключить. Дополнительный включатель SA1 позволяет управлять насосом вручную.

В базовом варианте приёмник звонка питается от двух пальчиковых элементов по 1,5 В. Но при использовании звонка в составе дистанционного управления насосом для его питания лучше использовать сетевой стабилизированный источник питания с напряжением 5 В. Ток потребления от источника питания приёмного узла не превышает 10 мА в режиме ожидания и увеличивается до 50 мА при срабатывании реле. Для других типов реле ток потребления может иметь другое значение. Повышать напряжение питания приёмного узла до 12 В и более не стоит, так как дальность уверенной связи с пультом-передатчиком при этом не увеличится. Оптимальное напряжение питания приемника - 5...Э В.

ДОРАБОТКА ПУЛЬТА-ПЕРЕДАТЧИКА БЕСПРОВОДНОГО ЗВОНКА

Пульт-передатчик беспроводного звонка размещен в корпусе размером со стандартный спичечный коробок. Его электрическая схема приведена на рис.3

3. В доработке схемы пульт-передатчик не нуждается. Чтобы не менять раз в год батарею, для питание передатчика использован адаптер типа ТВ-182-С с выходным стабилизированным напряжением 12 В и током 0,5 А.

Для увеличения дальности работы к контакту антенны на печатной плате с помощью отрезка провода МГТФ-0,8 (или аналогичного) подсоединяют телескопическую штыревую антенну от любого переносного радиоприёмника. В крайнем случае можно использовать в качестве внешней антенны аналогичный можно многожильный провод длиной 35...40 см, распушив (как лепестки цветка) на конце его тонкие проводники (диаметр расходящихся лепестков 6...8 см). Но такая импровизированная антенна работает заметно хуже телескопической. Наибольшая дальность работы с телескопической антенной будет в том случае, когда она выдвинута примерно на 35...40 см.

Эта система предназначена для дистанционного управления охранной сигнализацией автомобиля. Она может быть использована непосредственно для постановки и снятия автомобиля с охраны или для предотвращения несанкционированного угона автомобиля (функция Anti-Hi-Jack) путем, например, прерывания низковольтного напряжения, поступающего на катушку зажигания. Система обеспечивает дистанционное управление в радиусе до 500 - 600 м в городе и до 5000 м в сельской местности. Для этого может быть использована классическая схема беспроводного дистанционного управления.

Радиоприемное устройство собрано на специализированных микросхемах и имеет всего одну высокочастотную катушку. Приемник настроен на фиксированную частоту 27,12 МГц.

Технические характеристики приемника:

Рабочая частота, МГц................................................................... 27,12

Чувствительность, мкВ....................................................................... 2

Селективность при расстройке на частоте 10 кГц, дБ...........................36

Ток потребления в режиме покое, мА................................................. 12

Промежуточная частота, кГц............................................................ 465

Размеры, мм................................................................................ 27x84

Принципиальная схема радиоприемника приведена на рис. 1. Устройство работает следующим образом. Принятый антенной радиосигнал через переходной конденсатор С1 поступает на входной контур L1, C2, настроенный на рабочую частоту - 27,12 МГц. С контура сигнал поступает на высокочастотный усилитель, собранный на полевом транзисторе VT1. Этот транзистор согласует несимметричный высокоомный выход контура с симметричным низко-омным входом микросхемы DA1. Диод VD1 служит для ограничения входного сигнала при небольшом расстоянии между антеннами приемника и передатчика. Частота гетеродина определяется частотой кварцевого резонатора Q1. В данном случае используется кварц с частотой 26,655 МГц. Принятый радиосигнал смешивается с сигналом гетеродина. В результате на нагрузке преобразователя резисторе R3 выделяется сигнал промежуточной частоты 465 кГц. С этого резистора сигнал ПЧ через пьезокерамический фильтр Q2 (он определяет селективность канала) поступает на микросхему DA2. Специализированная микросхема DA2 содержит усилитель промежуточной частоты, амплитудный детектор, систему АРУ и усилитель низкой частоты. С выхода детектора микросхемы (вывод 8) низкочастотное напряжение амплитудой 50-100 мВ

через регулятор уровня R8 поступает на вход усилителя звуковой частоты (вывод 9 DA2), который усиливает амплитуду этого сигнала до 1,5 - 2 В.

Усиленный низкочастотный сигнал с вывода 12 микросхемы DA2 через конденсатор С18 поступает на рефлексный ключевой каскад на транзисторе VT2. Он усиливает это НЧ напряжение. С коллектора VT2 через конденсатор С20 оно поступает на колебательный контур L2, С19, настроенный на частоту 1250 Гц. Если входное напряжение имеет эту частоту, то колебательный контур входит в резонанс и на катоде диода VD2 появится постоянное напряжение, которое приводит к открыванию транзистора VT2 и срабатыванию реле К1. Контактами реле замыкается или размыкается цепь устройства, подлежащего управлению.

Приемник смонтирован на печатной плате из одностороннего фольгированного стеклотекстолита (рис.2). Катушка L1 наматывается на ферритовом стержне диаметром 2,8 мм и длиной 12 мм. Она содержит 14 витков провода ПЭВ 0,31 мм. Пъе.чо керамический фильтр Q2 может быть любой с частотой настройки 465 кГц. Катушка низкочастотного контура L2 наматывается на ферритовом кольце размером К7х4х2 из феррита 400НН и содержит 350 витков пропода ПЭВ 0,06 мм. Реле К1 герконовое, типа РЭС-55 (паспорт РС4.569.603), рассчитанное на ток коммутации до 0,25 А. Можно использовать другое малогабаритное реле, например РЭС-43 или РЭС-44. Вместо транзистора можно использовать КТ312, КТ342 и КТЗЮ2. В радиоприемнике используются резисторы типа МЛТ-0,125, электролитические конденсаторы типа К50-6, К50-16 или К50-35.

Настройку приемника выполняют традиционным способом. Катушкой L1 настраивают высокочастотный контур на рабочую частоту. Резистором R8 устанавливают максимальную чувствительность приемника, при этом реле К1 не должно срабатывать от шумов. Резистором R9 устанавливают режим работы каскада на транзисторе VT2 таким образом, чтобы при выключенном модуляторе передатчика обмотка реле была обесточена. Катушкой L2 настраивают низкочастотный контур на частоту 1250 Гц.

Передатчик состоит из задающего генератора, усилителя мощности, модулятора и мультивибратора. Принципиальная схема радиопередатчика приведена на рис.3.


Основные технические характеристики радиопередатчика:

Рабочая частота, М Гц.................................................................... 27.12

Выходная мощность, мВт.................................................................. 600

Модуляция.................................................... амплитудная манипуляция

Частота модуляции, Гц................................................................... 1250

Потребляемый ток, А........................................................................0,3

Напряжение питания, В....................................................................... 9

Размеры, мм............................................................................... 30x100

Задающий генератор передатчика собран по схеме емкостной трехтонки на транзисторе VT1 с кварцевой стабилизацией частоты. Частота кварцевого резонатора Q1 выбрана равной 27,12 МГц. Дроссели LI, L2 и L3, предназначены для фильтрации высокочастотного сигнала в цепях питания. Колебания несущей частоты через конденсатор С8 поступают на усилитель мощности, собранный на транзисторе VT2. Усиленный ВЧ сигнал с коллектора транзистора VT2 поступает на вход двойного П-образного контура на элементах L4, L5, С12, С13, С14 и С15. Контур предназначен для согласования антенны и выхода передатчика, а также для и фильтрации высших гармоник несущей частоты. Катушка L6 используется для увеличения эквивалентной длины антенны и, следовательно, увеличения излучаемой мощности.

Модуляция сигнала" несущей частоты осуществляется ключевым каскадом на транзисторе VT3. При подаче на его базу сигнала низкого уровня он открывается и подает питание на усилитель мощности. Работой модулятора управляет мультивибратор, собранный на элементах DD1.1 и DD1.2. Частота генерации мультивибратора определяется емкостью конденсатора. СЗ и сопротивлением резистора R1. Элемент DD1.3 выполняет роль формирователя импульсов, а DD1.4 - блокиратора модулятора (переключателя SB2).

В режиме охраны, когда микрокнопка SB1 нажата (ее контакты замкнуты), передатчик излучает только немодулированную несущую частоту (режим отсутствия команды). В этом случае на выходе элемента DD1.4 устанавливается напряжение близкое к нулю. Это напряжение через резистор R5 поступает на базу транзистора VT3 и открывает его. Этот режим нужен для того, чтобы исключить влияние на работу приемника электрических помех и атмосферных шумов.

Для передачи команды управления необходимо разомкнуть контакты микрокнопки SB1. Тогда элемент DD1.4 откроется и пропустит через себя прямоугольные импульсы с частотой следования 1250 Гц, формируемые мультивибратором, Передатчик будет излучать модулированный сигнал, что вызовет срабатывание реле на приемной стороне.


Печатная плата радиопередатчика приведена на рис.4. Катушки L4 и L5 бескаркасные, они имеют диаметр 7 мм и длину 10 мм, L4 содержит 15 витков, L5 - 20 витков провода ПЭВ 0,56 мм. Катушка L6 выполнена также, как и катушка входного контура приемника, она имеет 18 витков провода ПЭВ 0,2 мм. Дроссели L2, L2 и L3 наматываются на постоянных резисторах МЛТ-0,5 сопротивлением не менее 100 кОм проводом ПЭВ 0,15 мм, по 40 витков. Микросхему К176ЛЕ5 можно заменить на КЛ61ЛЕ5. Транзистор VT1 можно использовать типа КТ608 с любой буквой, транзистор VT2 - КТ606, КТ907, а транзистор VT3 - КТ816 или ГТ403. Постоянные резисторы - все типа МЛТ-0,125.

Настройку передатчика производят при помощи волномера с индикатором напряженности поля или высокочастотного осциллографа с катушкой на входе. С подключенной штыревой антенной путем сжатия и растяжения витков катушек L4 и L5, подстройки емкости конденсатора С13 и индуктивности катушки L6 на выходе передатчика добиваются максимальной амплитуды сигнала несущей частоты. Подбором сопротивления резистора R1 устанавливают частоту следования импульсов мультивибратора 1250 Гц. После настройки все катушки передатчика и входную катушку приемника нужно зафиксировать дпоксидной смолой.

Если необходимо передавать несколько команд, в мультивибраторе передатчика можно установить переключатель для коммутации нескольких резисторов R1 с различными номиналами. В приемнике нужно сделать несколько каскадов, аналогичных каскаду на транзисторе VT2, отличающиеся друг от друга только емкостью конденсатора С19, и подключить их к точке "А" приемника. Рекомендуемые значения емкости конденсатора С19 для четырех команд - 0,15 мкФ, 0,1 мкФ, 0,068 мкФ, и 0,033 мкФ.


Для увеличения радиуса действия устройства на частоте 27,12 МГц желательно использовать кольцевую рамочную антенну. Однако в автомобиле это не очень удобно. Можно использовать шлеЙфовую антенну, выполненную по размерам заднего стекла автомобиля. Эта антенна имеет более равномерную, чем кольцевая, рамочная или штыревая антенны, диаграмму направленности в горизонтальной плоскости. Шлейфовая антенна (рис.5) выполнена из провода МГТФ 0,3. Из этого же провода выполнены шлейфы W1 и W2. Проводники шлейфов расположены параллельно я вплотную друг к другу. Провод антенны размещен под резиновым уплотнением заднего стекла автомобиля. Шлейфы W1, W2 сложены втрое по длине и вместе с конденсатором С1 размешены в диэлектрической трубке, прикрепленной к распорке из стеклотекстолита толщиной 1 мм. Распорка располагается вертикально посередине заднего стекла и фиксируется в резиновом уплотнении. Испытания тлейфовой антенны проводились на автомобиле ВАЗ-2107. Настройка по максимуму приема осуществлялась вращением ротора конденсатора С1.


Результаты испытания рамочной и шлейфовой антенн в виде диаграммы направленности по уровню устойчивого срабатывания автосторожа на открытой местности приведены на рис. 6. Диаграмма тлейфовой антенны обозначена цифрой 1, а цифрой 2 - диаграмма кольцевой рамочной антенны комплекса "Сигнал-РК". Поляризация излучения тлейфовой антенны - вертикальная. Из рис. видно, что шлейфовая антенна, расположенная по внутреннему периметру заднего стекла, не только является скрытой, но и обеспечивает большую дальность. Конструктивно шлейфовые антенны просты, надежны, дешевы и легко изготавливаются. Когда тлеифовая антенна не используется по прямому назначению, она может применяться в качестве эффективной приемной антенны радиоприемника УКВ диапазона.


В наш повседневный быт всё чаще входят различные интеллектуальные системы управления. Стиральные машинки давно сами стирают и сушат, автомобили сами паркуются, свет в доме сам включается...
Для управления светом жители стран бывшего СССР в основном используют «Сапфиры» или аналогичные устройства китайского производства. При стоимости в районе 15$ - 20$ эти устройства способны управлять лампой накаливания, плавно изменяя её яркость, и «имитировать» присутствие хозяев дома. Однако ряд существенных недостатков, в первую очередь связанных с неудобством дистанционного управления, отпугивает ряд потенциальных покупателей. Может я и ошибаюсь, заранее прошу прощения у тех, кого обижу своим последующим высказыванием, но я не знаю ни одного человека, который бы приобретя «Сапфир» захотел установить в доме и ещё один точно такой же ДЕВАЙС...
Песенка примитивных одноканальных диммеров спета... На сцену выходят многоканальные программируемые устройства...

Привожу описание разработанного по просьбам писавшего мне трудового народа 15-ти канального программируемого диммера «Sokol SHC-15» как оно есть...

Краткие технические характеристики модуля Sokol SHC-15:

15 каналов управления с функцией диммирования (регулировки яркости ламп накаливания);
- 50 шагов плавной регулировки яркости ламп накаливания в пределах от 8% (спираль еле светится) до 98%;
- управление каналами от стандартных настенных квартирных выключателей без фиксации положения;
- управление всеми функциям устройства и настройка параметров при помощи программы «Sokol SHC-15 Terminal»;
- возможность подключения выключателей освещения по одной двухпроводной линии, в том числе и по существующей квартирной электропроводке;
- управление каналами при помощи пульта дистанционного управления системы RC-5;
- режим обучения командам ПДУ;
- плавное нарастание яркости ламп при включении (функцию можно отключить через программу настройки) для каждого канала управления;
- плавное снижение яркости ламп при выключении (функцию можно отключить через программу настройки) для каждого канала управления;
- индивидуальная настройка минимальной и максимальной яркости для каждого канала управления;
- возможность включения / отключения функции регулировки яркости для каждого канала управления;
- триггерный (лампа включается и выключается при каждом повторном нажатии на кнопки управления каналом) или импульсный режим работы (лампа включается на установленное время и гаснет автоматически) каналов;
- установка времени активности канала в импульсном режиме в пределах от 0,1 до 9999,9 секунд с шагом 0,1 сек.;
- возможность использования стандартных выключателей освещения, смонтированных в доме (квартире) для управления освещением;
- наличие настраиваемых команд «включить всё» и «выключить всё» на ПДУ и клавиатуре;
- возможность выбора (настройки) каналов, реагирующих на команды «включить всё и выключить всё»;
- настраиваемый таймер автоматического отключения при отсутствии команд управления;
- время автоматического отключения каналов от 1сек. до 23ч.59мин.59сек. с шагом 1 сек.;
- полная гальваническая развязка каналов как друг от друга, так и от низковольтной части схемы;
- низкая цена устройства при самостоятельной сборке основного модуля;
- восстановление состояния каналов при пропадании и возобновлении подачи электроэнергии (питания модуля);
- запоминание и восстановление при включении канала последней установленной яркости;
- настраиваемые разнотональные звуковые сигналы модуля;
- защита от зависания микропрограммы;
- настраиваемая "чувствительность" функции "антидребезга контактов" клавиатуры ручного управления;
- практически неограниченный ток нагрузки канала, определяемый лишь мощностью применённого симистора.

Итак, для повторения этого устройства прежде всего нам необходимо ознакомиться с принципиальной электрической схемой модуля, а так же схемой его подключения...






Мельком взглянув на загадочные хитросплетения линий и узлов, радиолюбитель даже с небольшим опытом поймёт, что основной частью устройства является микроконтроллер ATMega8A фирмы Atmel.

Те кто поопытнее, взглянув на оба варианта схемы подключения кнопок (выключателей) управления, сразу поймёт, что декодирование номера нажатой клавиши и команды осуществляется по уровню напряжения, поступающего на вход АЦП микроконтроллера. Для снижения наводок на соединительные провода кнопок управления измерение напряжения производится близко к моменту перехода сетевого напряжения через ноль.


Для импульсно-фазовой регулировки яркости лампы накаливания необходимо точно определить всё тот же момент перехода сетевого напряжения через ноль. Для этого используется узел на транзисторе VT2, с коллектора которого напряжение подаётся на вход внешнего прерывания микроконтроллера. Для надёжного отпирания оптотиристоров микроконтроллер генерирует на портах пачки импульсов. Длительность каждого импульса 15 мкс., хотя тиристоры нормально отпираются уже при длительности импульса 8-12 мкс.

Параллельно соединённые микросхемы DA1...DA3 на схеме подключения - это фотоприёмники команд дистанционного управления TFMS5360 или аналогичные, установленные по одному в каждом помещении, из которого необходимо управлять девайсом... Фотоприёмники следует устанавливать в корпусе совместно с фильтрующими конденсаторами. Поскольку существует превеликое множество моделей и производителей микросхем-фотодатчиков, отличающихся друг от друга не только параметрами, но и расположением, на схеме подключения модуля приведена в качестве бонуса цоколёвка наиболее распространённых из них. Однако перед тем, как приобрести тот или иной ФП убедитесь, что он рассчитан на частоту 36кГц. И даташит Вам в руки...

Взглянув всё туда же легко заметить, что при подключении устройства использованы все три фазы электросети. Конечно это не необходимость. Просто изображая их я хотел подчеркнуть возможность установки и использования устройства для управления освещением и электроприборами в трёхфазной сети. На счёт того, что к модулю подключены лишь три лампы и одна розетка скажу: ну в лом мне одно и то же несколько раз перерисовывать... выходов то 15 - вот и используйте их по своему усмотрению... а как для этого настраивать модуль написано внизу статьи...

Тип симисторов нарочно не указываю. Смотрите справочники... Могу сказать лишь что пойдёт практически любой из серий BT136, BT142. Следует лишь по справочнику убедиться, что номинальный рабочий ток в 2-3 раза выше максимального тока нагрузки, а рабочее напряжение от 600 В. и выше... И не забудьте о радиаторе охлаждения, в случае если мощность нагрузки превышает 100 Вт. Для защиты тиристора от бросков высокого напряжения, в случае коммутации индуктивной нагрузки (например трансформатора или электродвигателя) желательно применить RC-цепочку (Ц2 на схеме подключения).

Драйвер RS-232 порта (драйвер COM-порта), микросхему DD2, на плату можно не устанавливать, особенно если нет необходимости управления устройством от компьютера или предполагается использовать готовый переходник USB-USART (например DATA-кабель от мобильного телефона). В последнем случае на плате предусмотрены перемычки, «закорачивающие» DD2 и напрямую подсоединяющие выводы rx и tx микропроцессора к выходному разъёму последовательного порта XS20.

Для уменьшения высоты печатной платы все высокие элементы, начиная от кварцевого резонатора и заканчивая электролитическими конденсаторами, «уложены» горизонтально. Размер печатной платы в этом случае составил 85 х 82 мм., при высоте не более 20 мм.

Чуть не забыл самое главное: В связи с нехваткой выводов портов микроконтроллера в схеме 15-ти канальной системы ДУ может использоваться только AT Mega 8A в корпусе TQFP-32 для поверхностного монтажа (например ATmega8A-AU). Под него, собственно, и рассчитана печатная плата. Из плюсов использования AT Mega 8A в корпусе TQFP-32 можно отметить что плата получается размерами почти в два раза меньше, а стоимость самого микроконтроллера в полтора раза ниже. Однако возможно использование микроконтроллера и в корпусе DIP (PDIP-28). В этом случае количество физических каналов будет ограничено числом 14. Кроме того, Вам придётся самостоятельно разрабатывать печатную плату устройства и использовать специальную прошивку с 14-канальной версией ПО. В случае использования микроконтроллера в корпусе DIP, (например ATmega8A-PU) следует учесть и несколько иную схему подключения выводов микроконтроллера. Кроме иной нумерации выводов, которую можно посмотреть в даташите на микроконтроллер ATmega8A следует учесть, что клавиатура и резистор R22 подключаются к выводу PC5 (ADC5) микроконтроллера в корпусе DIP, а не к выводу ADC6, как в корпусе TQFP на схеме. В этом случае физический канал №15 "отваливается" от контроллера, так как вывод оказывается уже занятым. Однако логически он остаётся доступным и виден в программе управления. Не спрашивайте почему я так сделал. И так отвечу: в лом было переделывать программу для ПК. Здесь резонно напрашивается вопрос: "А что будет если 15-канальную версию прошивки "залить" в микросхему в корпусе DIP?" Ответ: "Будет 15-канальная версия без ручного управления (клавиатур подключить некуда!)."

Теперь по схеме: На первый взгляд, с сетевым трансформатором и другими элементами схемы питания всё довольно стандартно и просто. Однако здесь есть свои подводные камни:

1. Конденсаторы С1 и С4 должны быть ёмкостью не менее 2200мкф. и 1000 мкф., соответственно, так как оптопары HL1...HL15 потребляют довольно внушительный импульсный ток (до 100 мА. в сумме);
2. Обязательной является установка блокирующих керамических конденсаторов там, где они изображены на схеме;
3. Обязательна установка дросселя L1 в цепи питания АЦП микроконтроллера;
4. Стабилизатор напряжения только 1,5-Амперный 78L05;
5. Трансформатор питания мощностью не менее 2 Вт. и выходным напряжением как можно ближе к 9-ти Вольтам (с трансформатором на другое напряжение вторичной обмотки потребуется подбор резисторов R1, R2 для обеспечения необходимой минимальной яркости свечения лампы)...

При подключении модуля для централизованного управления освещением дома, роллетами, гаражными воротами, розетками и др. следует предпринять ряд мер для повышения помехоустойчивости:

1. Обязательно использовать П-образный сетевой фильтр в цепи питания модуля по переменному току (перед трансформатором питания, см. схему подключения);
2. Крайне желательно наличие Г-образного фильтра (см. схему подключения - Ф1) перед силовой частью схемы управления нагрузками (тиристорами);
3. Желательно заземление общего провода модуля управления отдельным проводником сечением не менее 1,5 мм. кв.;
4. Для подключения выключателей и фотоприёмников рекомендуется использовать витую пару категории 5 (лучше в экране) или экранированный кабель;
5. Параллельно каждому фотоприёмнику устанавливать керамический и электролитический конденсатор (см. схему подключения);
6. Не прокладывать неэкранированные слаботочные цепи в непосредственной близости от силовых.

Перечень элементов для изготовления базового блока устройства в формате pdf, таблицу для расчета резисторов делителя клавиатуры и рисунок печатной платы в формате *.lay (SL5.0) можно скачать по ссылке внизу статьи.

Для управления нагрузками при помощи персонального компьютера и изменении настроек модуля предназначена программа .


Как видно на рисунке, для управления каналами предназначены ползунки регуляторы и «галочки». При установке или снятии «галочки», соответствующий канал модуля включает или отключает нагрузку. Программа управления имеет 100% обратную связь с модулем управления, поэтому если состояние канала изменится, то и «галочка», и регулятор в окне управления изменят своё состояние...

Плавно перемещая ползунок, можно легко изменить значение яркости от минимального до максимального значения (если регулировка яркости для данного канала разрешена в настройках этого канала, настройки см. ниже). При изменении яркости канала при помощи пульта дистанционного управления или выключателей освещения, все изменения автоматически отображаются и на состоянии ползунка-регулятора. При попытке сдвинуть регулятор, при включенном ограничении яркости, он тут же вернется в допустимые пределы. При плавном нарастании и снижении яркости, текущее значение яркости будет отображаться на ползунке регулятора и он будет "бегать", отображая снижение или рост выходного напряжения каналов.

Кнопки «Включить всё» и «Выключить всё» четко выполняют возложенные на них функции. Однако, отреагируют на нажатие этих кнопок лишь те каналы, которым разрешено «отзываться» на данное действие (настройку каналов см. ниже).

Общая яркость каналов так же в разъяснениях не нуждается. Здесь и так понятно, что при перемещении ползунка яркость всех каналов, которым в настройках разрешено изменять яркость, станет равна установленной.

При изменении настроек яркости и состояния каналов (вкл./откл.), все изменения будут автоматически сохранены в энергонезависимой памяти микроконтроллера. Для экономии ресурса последней, сохранение настроек производится лишь по истечении 10 секунд после окончания всех регулировок и только для каналов работающих в триггерном режиме.

С кнопкой «О программе» ясно, что там лицензионное соглашение и немного обо мне…

Для подключения устройства к компьютеру необходимо наличие COM или USB порта. В последнем случае потребуется USB-COM конвертер. Если устройство подключено, верно выбран нужный номер COM-порта и адрес модуля, то установка «галочки» в поле «Подключение к устройству» не вызовет никакой ошибки, а ползунки регуляторов яркости каналов спустя секунду займут реальное положение... При отсутствии в компьютере виртуальных или реальных портов в поле «выбор COM-порта» будет выведено сообщение «Нет портов!», а подключение к устройству станет невозможно.

Поле «Выбор адреса устройства» предназначено для работы сразу нескольких параллельно соединённых устройств на одном COM порту компьютера, если такая необходимость возникнет. Если несколько модулей соединено параллельно по одной линии, то достаточно выбрать «Широковещание» в поле адреса. Этот же трюк можно провернуть и для групповых команд «Включить всё / Выключить всё» при параллельном соединении модулей. В этом случае, на команду отреагируют все подключенные к текущему порту блоки. Для исключения конфликтных ситуаций с подобными фокусами нужно быть осторожным. Проще запустить несколько экземпляров программы и использовать различные порты компьютера. Однако, если необходимо действительно выполнить соединение модулей в параллель, то желательно позаботиться об оптронной развязке линий или применить конвертеры интерфейсов RS232/RS485 или аналогичные. Программы микроконтроллера и компьютера работают в полудуплексном режиме, что позволяет с лёгкостью реализовать аппаратный интерфейс RS485. Изменить адрес модуля можно в поле «Основные настройки».

Для настроек устройства предназначено второе окно программы управления, вызываемое по нажатию кнопки «Настройки…» в основном окне. Однако нажатие на эту кнопку, равно как и любые манипуляции с ползунками регуляторами будут возможны лишь после подключения к устройству.

Окно настроек содержит несколько вкладок, в каждой из которых содержится ряд настроек модуля. Вкладки с «Канал 1» по «Канал 15» предназначены для настроек соответствующих каналов.

Каждая из данных вкладок содержит настройки яркости и времени активности канала. Для разрешения регулировки яркости канала необходимо установить соответствующую «галочку». Для включения плавного нарастания или снижения яркости, нужно активировать соответствующую опцию. В полях максимальная и минимальная яркость всё говорит само за себя... Однако, для защиты «от дурака» и здесь есть своя «фишка». Если установить минимальное значение яркости равное максимальному или больше максимального, то регулировка яркости становится невозможной (равносильно запрету регулировки яркости), а лампа будет включаться с минимальной установленной яркостью.

Значение в поле времени активности канала может быть в пределах от 0 до 99 999. При этом следует учесть, что одна введённая в поле единица соответствует 0,1 секунде реального времени. Таким образом, время активности канала может быть установлено в пределах от 0 до 9 999,9 секунд (от 0 до 2-х часов 46 минут 39,9 секунд). Если в поле введено значение «0», то данный канал работает в триггерном режиме. Если же введённое значение отлично от нуля, то при подаче команды канал включится с заданной яркостью на время равное введённом значению, делённому на 10.

Эту фишку рекомендуется использовать совместно с плавным снижением яркости при освещении подъездов и лестничных клеток, а при малых значениях времени активности и запрете регулировки яркости - для управления въездными электрифицированными воротами и роллетами…

1.В триггерном режиме кратковременное нажатие на кнопку управления приведёт к включению или отключению канала, а длительное, при установленном «флажке» «регулировка яркости» в настройках канала, к изменению уровня яркости. При достижении яркостью минимального или максимального значения и установленном «флажке» «смена направления» в настройках канала, произойдёт смена направления изменения яркости. В любом случае при кратковременном отпускании кнопки, во время регулировки, и повторном длительном нажатии, направление будет изменяться на противоположное. Т.е. если яркость изменяется не в ту сторону - кратковременно отпускаем и снова нажимаем на кнопку.

2. В импульсном режиме работы кратковременное нажатие на кнопку управления, кнопку ПДУ или установка «галочки» на компьютере приведёт к включению канала, с заданной до момента активации импульсного режима работы, яркостью.

Вкладка «Основные настройки» позволяет настраивать глобальные параметры работы модуля:

Время автоматического отключения;
- Адрес модуля;
- Реакцию каналов на команды «Включить всё» и «Выключить всё»;
- Настройки звуковых сигналов, подаваемых модулем;
- Антидребезг клавиатуры ручного управления;
- Выполнить общий сброс настроек устройства…

Теперь обо всём по очереди:

1. Время автоматического отключения каналов – это время по истечении которого, в случае отсутствия команд управления, будет подана внутренняя команда, эквивалентная команде «Выключить всё». При этом отключаться все выходы, отключение которых разрешено по команде «Выключить всё» (см. ниже). Время отключения может быть от 1сек. до 17ч. 59мин. 59сек. При вводе во все графы нулей, т.е. 0 час. 0 мин. 0 сек. таймер автоматического отключения задействован не будет и каналы, следовательно, отключаться не будут.

2. Адрес модуля – логический адрес модуля управления для идентификации. Используется при параллельном подключении нескольких устройств к одному COM-порту компьютера.

3. Графы настройки реакции каналов на команды «Включить всё» и «Выключить всё» позволяют выбрать номера каналов, которые будут реагировать на данные команды. Данную функцию полезно использовать уходя из дома… Просто нажимаете на кнопку в прихожей и весь свет в доме гаснет, роллеты закрываются, а розетки и включенные в них холодильники работают…

4. Настройка звуковых сигналов, подаваемых модулем, позволяет выбрать те команды, в ответ на которые будет «мычать» бипер модуля…

5. В разделе "Клавиатура" задаётся количество опросов кнопок ручного управления (продолжительностью по 10 мс.) после которых будет считаться что кнопка кратковременно нажата. Длительность продолжительного нажатия должна быть, как минимум, в два раза больше. Изменяя установленное значение в пределах от 1 до 100 можно изменять и "чувствительность" клавиатуры к кратковременным нажатиям на кнопки управления в пределах 0,1...1,0 сек. По умолчанию установлено значение равное 20, что соответствует времени опроса равному 0,2 секунды.

6. Выполнить общий сброс настроек устройства обязательно необходимо при изготовлении и первом включении нового устройства. В этом случае в память модуля будут записаны настройки по умолчанию: все «фичи» и «навороты» включены, установлен триггерный режим работы всех каналов… Процедура сброса настроек преднамеренно усложнена для защиты «от дурака»: кнопка сброса остаётся неактивной до тех пор, пока не будет установлена «галочка» в поле «Разблокировать». В случае успешности операции сброса и преинициализации модуля новыми параметрами настройки, будет выведено соответствующее сообщение, ну а если не выйдет, то другое…

Вкладка «Настройки дистанционного управления» позволяет настроить это самое дистанционное управление, т.е. реакцию на кнопки пульта ДУ…

Поле настроек состоит из двух блоков: «Команды прямого управления выходами» и «Дополнительные команды дистанционного управления». Здесь всё просто: хотим посмотреть и изменить адреса или назначение кнопок пульта ДУ – читаем настройки, изменяем и записываем в модуль уже модифицированные…

Теперь о «самых больших кнопках». Они находятся внизу панели «Настройка устройства» под вкладками настроек. Эти четыре загадочных прямоугольника делают то, что на них, собственно, и написано: Читают и записывают сразу ВСЕ (!) настройки модуля и сохраняют или загружают эти настройки в программу управления из файла настроек с расширением «*.shcm». Строка состояния под кнопками показывает прогресс выполнения этих операций. Поскольку настроек много, а, следовательно, данные операции требуют передачи довольно внушительного объёма информации между модулем и компьютером, процесс длится несколько секунд. Прежде чем жать красную кнопку «Записать все настройки модуля» убедитесь, что на всех вкладках сделаны именно те настройки, которые вам необходимы. А то придётся перенастраивать…

Работоспособность программы управления проверена в операционных системах Windows XP SP2 x32, Windows XP SP2 x64, Windows XP SP3 x32, Windows Vista x32, Windows Seven x32, Windows Seven x64. Для нормальной работы программы необходимо наличие прав администратора на компьютере и установленный пакет Microsoft Net Framework v3.5 или выше.

Теперь о тех настройках модуля, которые могут быть выполнены без компьютера с применением лишь пульта дистанционного управления.

Прежде всего, это «обучение» модуля командам ПДУ, т.е. запись в память кодов дистанционного управления, аналогично вкладке «Настройки дистанционного управления» программы «Sokol SHC-15 Terminal». Для входа в режим «обучения» необходимо отключить питание модуля, если оно включено и выждать секунд 20-30, пока разрядятся конденсаторы фильтра питания. После чего необходимо нажать на пульте ДУ кнопку, желательно ту, которая в дальнейшем будет отвечать за управление первым каналом модуля, направить пульт на фотоприёмник и подать питание на устройство. Прозвучит один длинный звуковой сигнал. Кнопку ПДУ необходимо непрерывно удерживать до начала звучания второго звукового сигнала (примерно 10 секунд) после чего модуль подаст ещё один длинный звуковой сигнал и перейдёт в режим «обучения». Во время звучания второго длинного сигнала у вас ещё будет время (0,5 сек.) для того, что бы отпустить кнопку ПДУ, если вдруг передумаете и решите определить для управления первым каналом модуля другую клавишу пульта. Далее необходимо последовательно нажимать на кнопки ПДУ в следующем порядке:

1. Управление 1-м каналом модуля;
2. Управление 2-м каналом модуля;
………………………………………
15. Управление 15-м каналом модуля;
16. Включить все разрешённые для включения каналы;
17. Выключить все разрешённые для выключения каналы;
18. Вход в системное меню;
19. Управление звуком;
20. Сброс настроек модуля «по умолчанию».

После нажатия на каждую из кнопок микропроцессор сохраняет в энергонезависимой памяти код, соответствующий нажатой клавише и подаёт короткий звуковой сигнал низкого тона. При нажатии на кнопку, код которой уже был записан в память (кнопка была нажата ранее или удерживается в нажатом состоянии в текущий момент), устройство подаёт три коротких звуковых сигнала высокого тона, свидетельствующих об ошибке. По окончании процедуры запоминания прозвучит три коротких звуковых сигнала низкого тона, а устройство перейдёт в рабочий режим, в котором выполняется управление каналами.

Теперь можно сделать и аппаратный сброс настроек. Для этого необходимо нажать на ПДУ запрограммированную ранее кнопку «Меню». В этом случае устройство подаст звуковой сигнал низкой тональности, означающий вход в системное меню. Находясь в этом самом меню, далее нажимаем кнопку на ПДУ, соответствующую ранее запрограммированной команде «сброс настроек модуля «по умолчанию», а в ответ получаем три коротких сигнала низкого тона, подтверждающих, что сброс настроек выполнен.

Находясь в меню аппаратных настроек можно настроить и звуковые сигналы, подаваемые модулем. Для этого, находясь в меню, необходимо нажать кнопку «управление звуком» на ПДУ и после длинного сигнала высокого тона нажать на ПДУ одну из кнопок управления каналом:

Для отключения всех звуковых сигналов нажать кнопку «Управление 1-м каналом модуля»;

Для включения всех звуковых сигналов кроме сигналов приёма неверной команды нажать кнопку «Управление 2-м каналом модуля»;

Для включения только звукового сигнала подтверждения приёма правильной команды нажать кнопку «Управление 3-м каналом модуля»;

Для включения всех звуковых сигналов (приём любой команды, в т.ч. неверной, от ПДУ и клавиатуры, срабатывание таймера автоматического отключения) нажать кнопку «Управление 4-м каналом модуля».

О выполнении операции устройство сигнализирует двумя короткими звуковыми сигналами высокого тона. Обратите внимание, что возможности программы конфигурации «Sokol SHC-15 Terminal» в части настройки звуковых сигналов гораздо шире, чем непосредственная настройка звуковых сигналов через аппаратное меню модуля.

Для выхода из меню аппаратных настроек необходимо вновь нажать кнопку «Меню» на пульте дистанционного управления. После двух длинных звуковых сигналов низкого тона можно вновь управлять каналами и лампочками… Если из меню не «выходить» в течение 30 секунд, то «выход» произойдёт автоматически.

Теперь немного о практическом применении различных режимов работы устройства:

Для управления розетками, в которые включены любые электробытовые приборы кроме ламп накаливания (или других ламп, рассчитанных на совместную работу с диммерами, их ещё называют диммируемые) целесообразно установить минимальное значение яркости в окне настройки канала равное 50 (максимальное значение), то же касается и максимальной яркости. После этого следует запретить регулировку яркости канала, управляющего розетками, отключить плавное нарастание и снижение яркости.

Для управления лампами освещения на лестничных клетках, в кладовых, в подъездах и т.п. следует перевести соответствующий канал в режим временной активности, введя в поле настроек время активности в секундах умноженное на 10 и выбрать необходимую яркость, а если необходимо, то и плавное нарастание и снижение яркости. После нажатия на кнопку ПДУ или выключатель управления лампа загорится на установленное время (плавно, если включена соответствующая опция), после чего погаснет (опять же плавно, если разрешено).

Для управления роллетами и гаражными и иными въездными воротами целесообразно установить время активности канала равное или немного больше (если роллеты и ворота снабжены концевыми выключателями) времени полного открытия / закрытия. Если необходимо частично приоткрывать роллеты или ворота, то следует установить небольшое время активности 0,3 – 0,5 сек. Тогда исполнительный механизм будет работать только во время удержания кнопки в нажатом состоянии. Регулировки яркости следует отключить, как описано выше в случае с розетками.

Для управления лампами в режиме диммирования никаких особых настроек не требуется. Главное установить время активности канала равное нулю или выполнить сброс настроек по умолчанию. Остальные настройки (снижение и нарастание яркости, минимальная и максимальная яркость и т.п.) на ваш вкус и цвет.

При выборе пульта дистанционного управления необходимо учитывать, что обязательным условием является его работа по протоколу RC-5. Необходимо, также чтобы число генерируемых кодовых посылок было не менее 20. Необходимо помнить, что наличие, к примеру, 40 кнопок управления не гарантирует. что пульт может подавать 40 различных команд. Многие кнопки на современных ПДУ продублированы и, хоть и имеют различные подписи, внутри пульта электрически соединены параллельно (например « -/-- » и « <= » в пульте RC6).


Желательно использовать пульт с отличным от нулевого адресом системы, если, конечно же, читатели повторившие конструкцию не захотят управлять устройством одновременно с телевизором или доверить свой дом соседу, который переключая каналы будет «играться» с вашим освещением.

В продаже имеется множество универсальных ПДУ, в которых возможен выбор адреса управляемого устройства. Например, пульты серии RC6-2…RC6-5, широко используемые совместно с телевизорами «HORIZONT» шестого поколения, изменяют адрес устройства с «0» на «5» при нажатии совместно с кнопками управления клавиши «VCR». Данное обстоятельство позволяет использовать пульты из серии RC6-2…RC6-5, имеющие 42 кнопки и формирующие 40 команд управления, как для управления телевизором, так и описанным устройством, исключая взаимное влияние.

Идеальным вариантом является последующая переделка ПДУ, которая позволит изменить предаваемый адрес или переключать его. В ПДУ RC6-5 это достигается простым закорачиванием кнопки изменяющей адрес.

Поскольку возможно программирование включения выходов от различных пультов дистанционного управления (например, управление выходами 1...10 от одного ПДУ, а управление выходами 11...15 и сервисными функциями от ПДУ с другим системным адресом), при этом каждый из пультов управляет только «своими» выходами, этой возможностью также не стоит пренебрегать. Как вариант возможно использование одного ПДУ с небольшим количеством кнопок, но переключаемым системным адресом (обычно для этих целей в импортных пультах дистанционного управления используется клавиша «Shift»). В случае отсутствия переключателя его можно установить самостоятельно.

Демонстрационную версию прошивки микропроцессора, в hex-формате можно скачать по ссылке внизу статьи. Единственным ограничением демонстрационной версии является отсутствие сохранения настроек в энергонезависимой памяти устройства и в файл в программе управления для ПК. То есть при пропадании электроэнергии в сети или выключении питания все настройки модуля придётся делать заново;-)

Как должны быть запрограммированы Fuse-биты контроллера для микроконтроллеров ATMega8, ATMega8A, ATMega8L изображено на рисунке:



Ссылки на закачку:

Рассмотренные схемы предназначены для дистанционного управления нагрузками по телефонной проводной линии, по каналам мобильной и радиосвязи, а также управления различными устройствами с помощью инфракрасного канала.

Устройство инфракрасного управления состоит из двух блоков - передатчика и приемника в возможной дальностью действия до семи метров. Схема дистанционного управления построена с использованием микроконтроллера PIC12F629, прошивку которого вы можете скачать по зеленой стрелочке чуть выше.



Основа схемы ИК передатчика микроконтроллер PIC12F629 для его правильной работы по протоколу RC5 нужна стабильная несущая частота 36 кГц, поэтому в конструкции используется внешний генератор на радиокомпонентах Q1,C1,C2.


Модулированный ИК сигнал от передатчика поступается на приемный модуль TSOP4836 и обрабатывается PIC12F629 в соответствии с прошивкой. В зависимости, от нажатой кнопки в схеме передатчика, осуществляется срабатывание нужного канала в приемнике. Реле осуществляют коммутацию нагрузки на каждом из каналов. Для прошивки микроконтроллеров используйте .


К почти любому радиозвонку достаточно легко изготовить приставку для управления любой бытовой техникой. Доработка позволяет дистанционно включать и выключать бытовой прибор, в цепь питания которого введены контакты реле

На этой странице я собрал простые и доступные для повторения схемы дистанционного управления нагрузкой на микроконтроллерах, например освещением или любыми бытовыми приборами. Прошивки и прочие дополнительные файлы к проектам вы можете найти тут-же.

Рассмотренные схемы осуществляют дистанционное управление нагрузкой. В обоих конструкциях присутствует функция программирования, дающая возможность нажатием на запрограммированную кнопку включать или выключать различную нагрузку на растоянии

Принципиальная схема передатчика показана на рисунке 1. SW1 - это модуль из восьми DIP-переклю-чателей. Он устанавливается на плату и позволяет задать индивидуальный код -восьмиразрядное двоичное число. На приемнике должен быть задан точно такой же код, иначе он не будет реагировать на команды этого передатчика. Вместо блока DIP-переключателей можно распаять обычные проволочные перемычки, но, опять же х распайка должна совпадать с распайкой перемычек на приемном блоке

Схема питается от 5 В источника питания. Цифровая микросборка CD4017 это типовой счетчик делитель на 10. Полученный сигнал с датчика следует на микросхему, в соответствии от сигнала на выходах Q0-Q9 задается высокое состояние, в нашем схемотехническом примере к выходу Q1 подсоединено реле через биполярный транзистор T2. В высоковольтную цепь которой можно подключить почти любую нагрузку - от обычного утюга или микроволновки и заканчивая холодильником или кондиционером



Загоревшийся световой индикатор Status LED говорит о том что сигнал принят и реле сработало. В качестве пульта может применить даже любой ПДУ от от телевизора. Внешний вид собранного устройства на макетной плате:



В этой статье поговорим о том, как собрать ИК управление нагрузкой своими руками. Схема управления может управлять различными подключенными к ней нагрузками: светом, вентилятором, бытовой техникой. ИК управление осуществляется с помощью любого ПДУ, в.т.ч и телевизионного.

В первой рассмотренной схеме управление вентилятором или кулером осуществляется по сигналу термистора в течении заданного временного интервала. Радиолюбительская конструкция очень проста, т.к собрана всего на трех биполярных транзисторах. Такие системы управления можно применить в самых разных областях, где требуется охлаждение с помощью вентилятора, допустим, охлаждения системной платы компьютера, в мощных звуковых усилителях и источниках питания и подобным устройствах, которые могут перегреваться в процессе своей работы.