Разные способы доказательства теоремы Пифагора: примеры, описание и отзывы. Теорема Пифагора: история вопроса, доказательства, примеры практического применения Пифагоровы штаны во все стороны равны теорема

Некоторые дискуссии меня развлекают безмерно...

Привет, что делаешь?
-Да вот, задачки решаю из журнала.
-Ну ты даёшь! Не ожидал от тебя.
-Чего не ожидал?
-Что ты опустишься до задачек. Вроде умный ведь, а веришь во всякую ерунду.
-Извини, не понимаю. Что ты называешь ерундой?
-Да всю эту вашу математику. Ведь очевидно же, что фигня полная.
-Как ты можешь так говорить? Математика - царица наук...
-Вот только давай без этого пафоса, да? Математика - вообще не наука, а одно сплошное нагромождение дурацких законов и правил.
-Что?!
-Ой, ну не делай такие большие глаза, ты же сам знаешь, что я прав. Нет, я не спорю, таблица умножения - великая вещь, она сыграла немалую роль в становлении культуры и истории человечества. Но теперь-то это всё уже неактуально! И потом, зачем было всё усложнять? В природе не существует никаких интегралов или логарифмов, это всё выдумки математиков.
-Погоди. Математики ничего не выдумывали, они открывали новые законы взаимодействия чисел, пользуясь проверенным инструментарием...
-Ну да, конечно! И ты этому веришь? Ты что, сам не видишь, какую чушь они постоянно несут? Тебе привести пример?
-Да уж, будь добр.
-Да пожалуйста! Теорема Пифагора.
-Ну и что в ней не так?
-Да всё не так! "Пифагоровы штаны на все стороны равны", понимаете ли. А ты в курсе, что греки во времена Пифагора не носили штанов? Как Пифагор мог вообще рассуждать о том, о чём не имел никакого понятия?
-Погоди. При чём тут штаны?
-Ну они же вроде бы Пифагоровы? Или нет? Ты признаёшь, что у Пифагора не было штанов?
-Ну, вообще-то, конечно, не было...
-Ага, значит, уже в самом названии теоремы явное несоответствие! Как после этого можно относиться серьёзно к тому, что там говорится?
-Минутку. Пифагор ничего не говорил о штанах...
-Ты это признаёшь, да?
-Да... Так вот, можно я продолжу? Пифагор ничего не говорил о штанах, и не надо ему приписывать чужие глупости...
-Ага, ты сам согласен, что это всё глупости!
-Да не говорил я такого!
-Только что сказал. Ты сам себе противоречишь.
-Так. Стоп. Что говорится в теореме Пифагора?
-Что все штаны равны.
-Блин, да ты вообще читал эту теорему?!
-Я знаю.
-Откуда?
-Я читал.
-Что ты читал?!
-Лобачевского.
*пауза*
-Прости, а какое отношение имеет Лобачевский к Пифагору?
-Ну, Лобачевский же тоже математик, и он вроде бы даже более крутой авторитет, чем Пифагор, скажешь нет?
*вздох*
-Ну и что же сказал Лобачевский о теореме Пифагора?
-Что штаны равны. Но это же чушь! Как такие штаны вообще можно носить? И к тому же, Пифагор вообще не носил штанов!
-Лобачевский так сказал?!
*секундная пауза, с уверенностью*
-Да!
-Покажи мне, где это написано.
-Нет, ну там это не написано так прямо...
-Как называется книга?
-Да это не книга, это статья в газете. Про то, что Лобачевский на самом деле был агент германской разведки... ну, это к делу не относится. Всё-равно он наверняка так говорил. Он же тоже математик, значит они с Пифагором заодно.
-Пифагор ничего не говорил про штаны.
-Ну да! О том и речь. Фигня это всё.
-Давай по порядку. Откуда ты лично знаешь, о чём говорится в теореме Пифагора?
-Ой, ну брось! Это же все знают. Любого спроси, тебе сразу ответят.
-Пифагоровы штаны - это не штаны...
-А, ну конечно! Это аллегория! Знаешь, сколько раз я уже такое слышал?
-Теорема Пифагора гласит, что сумма квадратов катетов равна квадрату гипотенузы. И ВСЁ!
-А где штаны?
-Да не было у Пифагора никаких штанов!!!
-Ну вот видишь, я тебе о том и толкую. Фигня вся ваша математика.
-А вот и не фигня! Смотри сам. Вот треугольник. Вот гипотенуза. Вот катеты...
-А почему вдруг именно это катеты, а это гипотенуза? Может, наоборот?
-Нет. Катетами называются две стороны, образующие прямой угол.
-Ну вот тебе ещё один прямой угол.
-Он не прямой.
-А какой же он, кривой?
-Нет, он острый.
-Так и этот тоже острый.
-Он не острый, он прямой.
-Знаешь, не морочь мне голову! Ты просто называешь вещи как тебе удобно, лишь бы подогнать результат под желаемый.
-Две короткие стороны прямоугольного треугольника - это катеты. Длинная сторона - гипотенуза.
-А, кто короче - тот катет? И гипотенуза, значит, уже не катит? Ты сам-то послушай себя со стороны, какой ты бред несёшь. На дворе 21 век, расцвет демократии, а у тебя средневековье какое-то. Стороны у него, видишь ли, неравны...
-Прямоугольного треугольника с равными сторонами не существует...
-А ты уверен? Давай я тебе нарисую. Вот, смотри. Прямоугольный? Прямоугольный. И все стороны равны!
-Ты нарисовал квадрат.
-Ну и что?
-Квадрат - не треугольник.
-А, ну конечно! Как только он нас не устраивает, сразу "не треугольник"! Не морочь мне голову. Считай сам: один угол, два угла, три угла.
-Четыре.
-Ну и что?
-Это квадрат.
-А квадрат что, не треугольник? Он хуже, да? Только потому, что я его нарисовал? Три угла есть? Есть, и даже вот один запасной. Ну и нефиг тут, понимаешь...
-Ладно, оставим эту тему.
-Ага, уже сдаёшься? Нечего возразить? Ты признаёшь, что математика - фигня?
-Нет, не признаю.
-Ну вот, опять снова-здорово! Я же тебе только что всё подробно доказал! Если в основе всей вашей геометрии лежит учение Пифагора, а оно, извиняюсь, полная чушь... то о чём вообще можно дальше рассуждать?
-Учение Пифагора - не чушь...
-Ну как же! А то я не слышал про школу пифагорейцев! Они, если хочешь знать, предавались оргиям!
-При чём тут...
-А Пифагор вообще был педик! Он сам сказал, что Платон ему друг.
-Пифагор?!
-А ты не знал? Да они вообще все педики были. И на голову трёхнутые. Один в бочке спал, другой голышом по городу бегал...
-В бочке спал Диоген, но он был философ, а не математик...
-А, ну конечно! Если кто-то в бочку полез, то уже и не математик! Зачем нам лишний позор? Знаем, знаем, проходили. А вот ты объясни мне, почему всякие педики, которые жили три тыщи лет назад и бегали без штанов, должны быть для меня авторитетом? С какой стати я должен принимать их точку зрения?
-Ладно, оставь...
-Да нет, ты послушай! Я тебя, в конце концов, тоже слушал. Вот эти ваши вычисления, подсчёты... Считать вы все умеете! А спроси у вас что-нибудь по существу, тут же сразу: "это частное, это переменная, а это два неизвестных". А ты мне в о-о-о-общем скажи, без частностей! И без всяких там неизвестных, непознанных, экзистенциальных... Меня от этого тошнит, понимаешь?
-Понимаю.
-Ну вот объясни мне, почему дважды два всегда четыре? Кто это придумал? И почему я обязан принимать это как данность и не имею права сомневаться?
-Да сомневайся сколько хочешь...
-Нет, ты мне объясни! Только без этих ваших штучек, а нормально, по-человечески, чтобы понятно было.
-Дважды два равно четырём, потому что два раза по два будет четыре.
-Масло масляное. Что ты мне нового сказал?
-Дважды два - это два, умноженное на два. Возьми два и два и сложи их...
-Так сложить или умножить?
-Это одно и то же...
-Оба-на! Выходит, если я сложу и умножу семь и восемь, тоже получится одно и то же?
-Нет.
-А почему?
-Потому что семь плюс восемь не равняется...
-А если я девять умножу на два, получится четыре?
-Нет.
-А почему? Два умножал - получилось, а с девяткой вдруг облом?
-Да. Дважды девять - восемнадцать.
-А дважды семь?
-Четырнадцать.
-А дважды пять?
-Десять.
-То есть, четыре получается только в одном частном случае?
-Именно так.
-А теперь подумай сам. Ты говоришь, что существуют некие жёсткие законы и правила умножения. О каких законах тут вообще может идти речь, если в каждом конкретном случае получается другой результат?!
-Это не совсем так. Иногда результат может совпадать. Например, дважды шесть равняется двенадцати. И четырежды три - тоже...
-Ещё хуже! Два, шесть, три четыре - вообще ничего общего! Ты сам видишь, что результат никак не зависит от исходных данных. Принимается одно и то же решение в двух кардинально различных ситуациях! И это при том, что одна и та же двойка, которую мы берём постоянно и ни на что не меняем, со всеми числами всегда даёт разный ответ. Где, спрашивается, логика?
-Но это же, как-раз, логично!
-Для тебя - может быть. Вы, математики, всегда верите во всякую запредельную хрень. А меня эти ваши выкладки не убеждают. И знаешь почему?
-Почему?
-Потому что я знаю , зачем нужна на самом деле ваша математика. Она ведь вся к чему сводится? "У Кати в кармане одно яблоко, а у Миши пять. Сколько яблок должен отдать Миша Кате, чтобы яблок у них стало поровну?" И знаешь, что я тебе скажу? Миша никому ничего не должен отдавать! У Кати одно яблоко есть - и хватит. Мало ей? Пусть идёт вкалывать, и сама себе честно заработает хоть на яблоки, хоть на груши, хоть на ананасы в шампанском. А если кто-то хочет не работать, а только задачки решать - пусть сидит со своим одним яблоком и не выпендривается!

Потенциал к творчеству обычно приписывают гуманитарным дисциплинам, естественно научным оставляя анализ, практический подход и сухой язык формул и цифр. Математику к гуманитарным предметам никак не отнесешь. Но без творчеств в «царице всех наук» далеко не уедешь – об этом людям известно с давних пор. Со времен Пифагора, например.

Школьные учебники, к сожалению, обычно не объясняют, что в математике важно не только зубрить теоремы, аксиомы и формулы. Важно понимать и чувствовать ее фундаментальные принципы. И при этом попробовать освободить свой ум от штампов и азбучных истин – только в таких условиях рождаются все великие открытия.

К таким открытиям можно отнести и то, которое сегодня мы знаем как теорему Пифагора. С его помощью мы попробуем показать, что математика не только может, но и должна быть увлекательной. И что это приключение подходит не только ботаникам в толстых очках, а всем, кто крепок умом и силен духом.

Из истории вопроса

Строго говоря, хоть теорема и называется «теоремой Пифагора», сам Пифагор ее не открывал. Прямоугольный треугольник и его особенные свойства изучались задолго до него. Есть две полярных точки зрения на этот вопрос. По одной версии Пифагор первым нашел полноценное доказательство теоремы. По другой доказательство не принадлежит авторству Пифагора.

Сегодня уже не проверишь, кто прав, а кто заблуждается. Известно лишь, что доказательства Пифагора, если оно когда-либо существовало, не сохранилось. Впрочем, высказываются предположения, что знаменитое доказательство из «Начал» Евклида может принадлежать как раз Пифагору, и Евклид его только зафиксировал.

Также сегодня известно, что задачи о прямоугольном треугольнике встречаются в египетских источниках времен фараона Аменемхета I, на вавилонских глиняных табличках периода правления царя Хаммурапи, в древнеиндийском трактате «Сульва сутра» и древнекитайском сочинении «Чжоу-би суань цзинь».

Как видите, теорема Пифагора занимала умы математиков с древнейших времен. Подтверждением служит и около 367 разнообразных доказательств, существующих сегодня. В этом с ней не может тягаться ни одна другая теорема. Среди знаменитых авторов доказательств можно вспомнить Леонардо да Винчи и двадцатого президента США Джеймса Гарфилда. Все это говорит о чрезвычайной важности этой теоремы для математики: из нее выводится или так или иначе с нею связано большинство теорем геометрии.

Доказательства теоремы Пифагора

В школьных учебниках в основном приводят алгебраические доказательства. Но суть теоремы в геометрии, так что давайте рассмотрим в первую очередь те доказателства знаменитой теоремы, которые опираются на эту науку.

Доказательство 1

Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.

Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:

Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.

Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны» :

Доказательство 2

Этот метод сочетает в себе алгебру и геометрию и может рассматриваться как вариант древнеиндийского доказательства математика Бхаскари.

Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b) . В каждом из квадратов выполните построения, как на рисунках 2 и 3.

В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b .

Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c .

Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b) .

Записав все это, имеем: a 2 +b 2 =(a+b) 2 – 2ab . Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a 2 +b 2 = a 2 +b 2 . При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c 2 . Т.е. a 2 +b 2 =c 2 – вы доказали теорему Пифагора.

Доказательство 3

Само же древнеиндийское доказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».

Но мы разберем это доказательство более подробно:

Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с . Катеты треугольника назовем а и b . В соответствии с чертежом сторона внутреннего квадрата это (a-b) .

Используйте формулу площади квадрата S=c 2 , чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b) 2 2+4*1\2*a*b .

Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c 2 =(a-b) 2 +4*1\2*a*b . В результате решения вы получите формулу теоремы Пифагора c 2 =a 2 +b 2 . Теорема доказана.

Доказательство 4

Это любопытное древнекитайское доказательство получило название «Стул невесты» - из-за похожей на стул фигуры, которая получается в результате всех построений:

В нем используется чертеж, который мы уже видели на рис.3 во втором доказательстве. А внутренний квадрат со стороной с построен так же, как в древнеиндийском доказательстве, приведенном выше.

Если мысленно отрезать от чертежа на рис.1 два зеленых прямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a .

Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c 2 =a 2 +b 2 .

Доказательство 5

Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».

Постройте прямоугольный треугольник АВС . Нам надо доказать, что ВС 2 =АС 2 +АВ 2 .

Для этого продолжите катет АС и постройте отрезок CD , который равен катету АВ . Опустите перпендикулярный AD отрезок ED . Отрезки ED и АС равны. Соедините точки Е и В , а также Е и С и получите чертеж, как на рисунке ниже:

Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.

Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ , является не только прямоугольным, но и равнобедренным. Не забываем также, что АВ=CD , АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, S ABED =2*1/2(AB*AC)+1/2ВС 2 .

При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: S ABED =(DE+AB)*1/2AD . Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD .

Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC 2 =(DE+AB)*1/2(AC+CD) . Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC 2 =1/2(АВ+АС) 2 . А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC 2 =1/2АС 2 +2*1/2(АВ*АС)+1/2АВ 2 . Закончив все преобразования, получим именно то, что нам и надо: ВС 2 =АС 2 +АВ 2 . Мы доказали теорему.

Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость. Переливая жидкость, можно доказать равенство площадей и саму теорему в итоге.

Пару слов о Пифагоровых тройках

Этот вопрос мало или вообще не изучается в школьной программе. А между тем он является очень интересным и имеет большое значение в геометрии. Пифагоровы тройки применяются для решения многих математических задач. Представление о них может пригодиться вам в дальнейшем образовании.

Так что же такое Пифагоровы тройки? Так называют натуральные числа, собранные по трое, сумма квадратов двух из которых равна третьему числу в квадрате.

Пифагоровы тройки могут быть:

  • примитивными (все три числа – взаимно простые);
  • не примитивными (если каждое число тройки умножить на одно и то же число, получится новая тройка, которая не является примитивной).

Еще до нашей эры древних египтян завораживала мания чисел Пифагоровых троек: в задачах они рассматривали прямоугольный треугольник со сторонами 3,4 и 5 единиц. К слову, любой треугольник, стороны которого равны числам из пифагоровой тройки, по умолчанию является прямоугольным.

Примеры Пифагоровых троек: (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (10, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14, 48, 50), (30, 40, 50) и т.д.

Практическое применение теоремы

Теорема Пифагора находит применение не только в математике, но и в архитектуре и строительстве, астрономии и даже литературе.

Сначала про строительство: теорема Пифагора находит в нем широкое применение в задачах разного уровня сложности. Например, посмотрите на окно в романском стиле:

Обозначим ширину окна как b , тогда радиус большой полуокружности можно обозначить как R и выразить через b: R=b/2 . Радиус меньших полуокружностей также выразим через b: r=b/4 . В этой задаче нас интересует радиус внутренней окружности окна (назовем его p ).

Теорема Пифагора как раз и пригодиться, чтобы вычислить р . Для этого используем прямоугольный треугольник, который на рисунке обозначен пунктиром. Гипотенуза треугольника состоит из двух радиусов: b/4+p . Один катет представляет собой радиус b/4 , другой b/2-p . Используя теорему Пифагора, запишем: (b/4+p) 2 =(b/4) 2 +(b/2-p) 2 . Далее раскроем скобки и получим b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4-bp+p 2 . Преобразуем это выражение в bp/2=b 2 /4-bp . А затем разделим все члены на b , приведем подобные, чтобы получить 3/2*p=b/4 . И в итоге найдем, что p=b/6 – что нам и требовалось.

С помощью теоремы можно вычислить длину стропила для двускатной крыши. Определить, какой высоты вышка мобильной связи нужна, чтобы сигнал достигал определенного населенного пункта. И даже устойчиво установить новогоднюю елку на городской площади. Как видите, эта теорема живет не только на страницах учебников, но и часто бывает полезна в реальной жизни.

Что касается литературы, то теорема Пифагора вдохновляла писателей со времен античности и продолжает это делать в наше время. Например, немецкого писателя девятнадцатого века Адельберта фон Шамиссо она вдохновила на написание сонета:

Свет истины рассеется не скоро,
Но, воссияв, рассеется навряд
И, как тысячелетия назад,
Не вызовет сомнения и спора.

Мудрейшие, когда коснется взора
Свет истины, богов благодарят;
И сто быков, заколоты, лежат –
Ответный дар счастливца Пифагора.

С тех пор быки отчаянно ревут:
Навеки всполошило бычье племя
Событие, помянутое тут.

Им кажется: вот-вот настанет время,
И сызнова их в жертву принесут
Какой-нибудь великой теореме.

(перевод Виктора Топорова)

А в двадцатом веке советский писатель Евгений Велтистов в книге «Приключения Электроника» доказательствам теоремы Пифагора отвел целую главу. И еще полглавы рассказу о двухмерном мире, какой мог бы существовать, если бы теорема Пифагора стала основополагающим законом и даже религией для отдельно взятого мира. Жить в нем было бы гораздо проще, но и гораздо скучнее: например, там никто не понимает значения слов «круглый» и «пушистый».

А еще в книге «Приключения Электроника» автор устами учителя математики Таратара говорит: «Главное в математике – движение мысли, новые идеи». Именно этот творческий полет мысли порождает теорема Пифагора – не зря у нее столько разнообразных доказательств. Она помогает выйти за границы привычного, и на знакомые вещи посмотреть по-новому.

Заключение

Эта статья создана, чтобы вы могли заглянуть за пределы школьной программы по математике и узнать не только те доказательства теоремы Пифагора, которые приведены в учебниках «Геометрия 7-9» (Л.С. Атанасян, В.Н. Руденко) и «Геометрия 7-11» (А.В. Погорелов), но и другие любопытные способы доказать знаменитую теорему. А также увидеть примеры, как теорема Пифагора может применяться в обычной жизни.

Во-первых, эта информация позволит вам претендовать на более высокие баллы на уроках математики – сведения по предмету из дополнительных источников всегда высоко оцениваются.

Во-вторых, нам хотелось помочь вам прочувствовать, насколько математика интересная наука. Убедиться на конкретных примерах, что в ней всегда есть место творчеству. Мы надеемся, что теорема Пифагора и эта статья вдохновят вас на самостоятельные поиски и волнующие открытия в математике и других науках.

Расскажите нам в комментариях, показались ли вам приведенные в статье доказательства интересными. Пригодились ли вам эти сведения в учебе. Напишите нам, что думаете о теореме Пифагора и этой статье – нам будет приятно обсудить все это с вами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Штаны - получить на Академике действующий промокод ridestep или выгодно штаны купить со скидкой на распродаже в ridestep

    Жарг. шк. Шутл. Теорема Пифагора, устанавливающая соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника. БТС, 835 … Большой словарь русских поговорок

    Пифагоровы штаны - Шуточное название теоремы Пифагора, возникшее в силу того, что построенные на сторонах прямоугольника и расходящиеся в разные стороны квадраты напоминают покрой штанов. Геометрию я любил… и на вступительном экзамене в университет получил даже от… … Фразеологический словарь русского литературного языка

    пифагоровы штаны - Шутливое название теоремы Пифагора, устанавливающей соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника, что внешне на рисунках выглядит как покрой штанов … Словарь многих выражений

    Иноск.: о человеке даровитом Ср. Это несомненности мудрец. В древности он наверное выдумал бы Пифагоровы штаны... Салтыков. Пестрые письма. Пифагоровы штаны (геом.): в прямоугольнике квадрат гипотенузы равняется квадратам катетов (учение… … Большой толково-фразеологический словарь Михельсона

    Пифагоровы штаны на все стороны равны - Число пуговиц известно. Почему же хую тесно? (грубо) о штанах и мужском половом органе. Пифагоровы штаны на все стороны равны. Чтобы это доказать, надо снять и показать 1) о теореме Пифагора; 2) о широких штанах … Живая речь. Словарь разговорных выражений

    Пиѳагоровы штаны (выдумать) иноск. о человѣкѣ даровитомъ. Ср. Это несомнѣнности мудрецъ. Въ древности онъ навѣрное выдумалъ бы пиѳагоровы штаны... Салтыковъ. Пестрыя письма. Пиѳагоровы штаны (геом.): въ прямоугольникѣ квадратъ гипотенузы… … Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

    Пифагоровы штаны во все стороны равны - Шутливое доказательство теоремы Пифагора; также в шутку о мешковатых брюках приятеля … Словарь народной фразеологии

    Присл., груб …

    ПИФАГОРОВЫ ШТАНЫ НА ВСЕ СТОРОНЫ РАВНЫ (ЧИСЛО ПУГОВИЦ ИЗВЕСТНО. ПОЧЕМУ ЖЕ ХУЮ ТЕСНО? / ЧТОБЫ ЭТО ДОКАЗАТЬ, НАДО СНЯТЬ И ПОКАЗАТЬ) - присл., груб … Толковый словарь современных разговорных фразеологизмов и присловий

    Сущ., мн., употр. сравн. часто Морфология: мн. что? штаны, (нет) чего? штанов, чему? штанам, (вижу) что? штаны, чем? штанами, о чём? о штанах 1. Штаны это предмет одежды, который имеет две короткие или длинные штанины и закрывает нижнюю часть… … Толковый словарь Дмитриева

Книги

  • Пифагоровы штаны , . В этой книге вы найдете фантастику и приключения, чудеса и выдумку. Смешное и грустное, обыкновенное и загадочное... А что ещё нужно для занимательного чтения? Главное, чтобы было…
  • Чудеса на колёсах , Маркуша Анатолий. Миллионы колёс крутятся по всей земле - катят автомобили, отмеряют время в часах, постукивают под поездами, выполняют бесчисленное множество работ в станках и разнообразных механизмах. Они…

» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.

Пифагорова гипотенуза

Пифагоровы треугольники имеют прямой угол и целочисленные стороны. У простейшего из них самая длинная сторона имеет длину 5, остальные - 3 и 4. Всего существует 5 правильных многогранников. Уравнение пятой степени невозможно решить при помощи корней пятой степени - или любых других корней. Решетки на плоскости и в трехмерном пространстве не имеют пятилепестковой симметрии вращения, поэтому такие симметрии отсутствуют и в кристаллах. Однако они могут быть у решеток в четырехмерном пространстве и в занятных структурах, известных как квазикристаллы.

Гипотенуза самой маленькой пифагоровой тройки

Теорема Пифагора гласит, что самая длинная сторона прямоугольного треугольника (пресловутая гипотенуза) соотносится с двумя другими сторонами этого треугольника очень просто и красиво: квадрат гипотенузы равен сумме квадратов двух других сторон.

Традиционно мы называем эту теорему именем Пифагора, но на самом деле история ее достаточно туманна. Глиняные таблички позволяют предположить, что древние вавилоняне знали теорему Пифагора задолго до самого Пифагора; славу первооткрывателя принес ему математический культ пифагорейцев, сторонники которого верили, что Вселенная основана на числовых закономерностях. Древние авторы приписывали пифагорейцам - а значит, и Пифагору - самые разные математические теоремы, но на самом деле мы представления не имеем о том, какой математикой занимался сам Пифагор. Мы даже не знаем, могли ли пифагорейцы доказать теорему Пифагора или просто верили в то, что она верна. Или, что наиболее вероятно, у них были убедительные данные о ее истинности, которых тем не менее не хватило бы на то, что мы считаем доказательством сегодня.

Доказательства Пифагора

Первое известное доказательство теоремы Пифагора мы находим в «Началах» Евклида. Это достаточно сложное доказательство с использованием чертежа, в котором викторианские школьники сразу узнали бы «пифагоровы штаны»; чертеж и правда напоминает сохнущие на веревке подштанники. Известны буквально сотни других доказательств, большинство из которых делает доказываемое утверждение более очевидным.


// Рис. 33. Пифагоровы штаны

Одно из простейших доказательств - это своего рода математический пазл. Возьмите любой прямоугольный треугольник, сделайте четыре его копии и соберите их внутри квадрата. При одной укладке мы видим квадрат на гипотенузе; при другой - квадраты на двух других сторонах треугольника. При этом ясно, что площади в том и другом случае равны.


// Рис. 34. Слева: квадрат на гипотенузе (плюс четыре треугольника). Справа: сумма квадратов на двух других сторонах (плюс те же четыре треугольника). А теперь исключите треугольники

Рассечение Перигаля - еще одно доказательство-пазл.


// Рис. 35. Рассечение Перигаля

Существует также доказательство теоремы с использованием укладки квадратов на плоскости. Возможно, именно так пифагорейцы или их неизвестные предшественники открыли эту теорему. Если взглянуть на то, как косой квадрат перекрывает два других квадрата, то можно увидеть, как разрезать большой квадрат на куски, а затем сложить из них два меньших квадрата. Можно увидеть также прямоугольные треугольники, стороны которых дают размеры трех задействованных квадратов.


// Рис. 36. Доказательство мощением

Есть интересные доказательства с использованием подобных треугольников в тригонометрии. Известно по крайней мере пятьдесят различных доказательств.

Пифагоровы тройки

В теории чисел теорема Пифагора стала источником плодотворной идеи: найти целочисленные решения алгебраических уравнений. Пифагорова тройка - это набор целых чисел a, b и c, таких что

Геометрически такая тройка определяет прямоугольный треугольник с целочисленными сторонами.

Самая маленькая гипотенуза пифагоровой тройки равна 5.

Другие две стороны этого треугольника равны 3 и 4. Здесь

32 + 42 = 9 + 16 = 25 = 52.

Следующая по величине гипотенуза равна 10, потому что

62 + 82 = 36 + 64 = 100 = 102.

Однако это, по существу, тот же треугольник с удвоенными сторонами. Следующая по величине и по-настоящему другая гипотенуза равна 13, для нее

52 + 122 = 25 + 144 = 169 = 132.

Евклид знал, что существует бесконечное число различных вариантов пифагоровых троек, и дал то, что можно назвать формулой для нахождения их всех. Позже Диофант Александрийский предложил простой рецепт, в основном совпадающий с евклидовым.

Возьмите любые два натуральных числа и вычислите:

их удвоенное произведение;

разность их квадратов;

сумму их квадратов.

Три получившихся числа будут сторонами пифагорова треугольника.

Возьмем, к примеру, числа 2 и 1. Вычислим:

удвоенное произведение: 2 × 2 × 1 = 4;

разность квадратов: 22 - 12 = 3;

сумма квадратов: 22 + 12 = 5,

и мы получили знаменитый треугольник 3–4–5. Если взять вместо этого числа 3 и 2, получим:

удвоенное произведение: 2 × 3 × 2 = 12;

разность квадратов: 32 - 22 = 5;

сумму квадратов: 32 + 22 = 13,

и получаем следующий по известности треугольник 5 - 12 - 13. Попробуем взять числа 42 и 23 и получим:

удвоенное произведение: 2 × 42 × 23 = 1932;

разность квадратов: 422 - 232 = 1235;

сумма квадратов: 422 + 232 = 2293,

никто никогда не слышал о треугольнике 1235–1932–2293.

Но эти числа тоже работают:

12352 + 19322 = 1525225 + 3732624 = 5257849 = 22932.

В диофантовом правиле есть еще одна особенность, на которую уже намекали: получив три числа, мы можем взять еще одно произвольное число и все их на него умножить. Таким образом треугольник 3–4–5 можно превратить в треугольник 6–8–10, умножив все стороны на 2, или в треугольник 15–20–25, умножив все на 5.

Если перейти на язык алгебры, правило приобретает следующий вид: пусть u, v и k - натуральные числа. Тогда прямоугольный треугольник со сторонами

2kuv и k (u2 - v2) имеет гипотенузу

Существуют и другие способы изложения основной идеи, но все они сводятся к описанному выше. Этот метод позволяет получить все пифагоровы тройки.

Правильные многогранники

Существует ровным счетом пять правильных многогранников. Правильный многогранник (или полиэдр) - это объемная фигура с конечным числом плоских граней. Грани сходятся друг с другом на линиях, именуемых ребрами; ребра встречаются в точках, именуемых вершинами.

Кульминацией евклидовых «Начал» является доказательство того, что может быть только пять правильных многогранников, то есть многогранников, у которых каждая грань представляет собой правильный многоугольник (равные стороны, равные углы), все грани идентичны и все вершины окружены равным числом одинаково расположенных граней. Вот пять правильных многогранников:

тетраэдр с четырьмя треугольными гранями, четырьмя вершинами и шестью ребрами;

куб, или гексаэдр, с 6 квадратными гранями, 8 вершинами и 12 ребрами;

октаэдр с 8 треугольными гранями, 6 вершинами и 12 ребрами;

додекаэдр с 12 пятиугольными гранями, 20 вершинами и 30 ребрами;

икосаэдр с 20 треугольными гранями, 12 вершинами и 30 ребрами.


// Рис. 37. Пять правильных многогранников

Правильные многогранники можно найти и в природе. В 1904 г. Эрнст Геккель опубликовал рисунки крохотных организмов, известных как радиолярии; многие из них по форме напоминают те самые пять правильных многогранников. Возможно, правда, он немного подправил природу, и рисунки не отражают полностью форму конкретных живых существ. Первые три структуры наблюдаются также в кристаллах. Додекаэдра и икосаэдра в кристаллах вы не найдете, хотя неправильные додекаэдры и икосаэдры там иногда попадаются. Настоящие додекаэдры могут возникать в виде квазикристаллов, которые во всем похожи на кристаллы, за исключением того, что их атомы не образуют периодической решетки.


// Рис. 38. Рисунки Геккеля: радиолярии в форме правильных многогранников


// Рис. 39. Развертки правильных многогранников

Бывает интересно делать модели правильных многогранников из бумаги, вырезав предварительно набор соединенных между собой граней - это называется разверткой многогранника; развертку складывают по ребрам и склеивают соответствующие ребра между собой. Полезно добавить к одному из ребер каждой такой пары дополнительную площадку для клея, как показано на рис. 39. Если такой площадки нет, можно использовать липкую ленту.

Уравнение пятой степени

Не существует алгебраической формулы для решения уравнений 5-й степени.

В общем виде уравнение пятой степени выглядит так:

ax5 + bx4 + cx3 + dx2 + ex + f = 0.

Проблема в том, чтобы найти формулу для решений такого уравнения (у него может быть до пяти решений). Опыт обращения с квадратными и кубическими уравнениями, а также с уравнениями четвертой степени позволяет предположить, что такая формула должна существовать и для уравнений пятой степени, причем в ней, по идее, должны фигурировать корни пятой, третьей и второй степени. Опять же, можно смело предположить, что такая формула, если она существует, окажется очень и очень сложной.

Это предположение в конечном итоге оказалось ошибочным. В самом деле, никакой такой формулы не существует; по крайней мере не существует формулы, состоящей из коэффициентов a, b, c, d, e и f, составленной с использованием сложения, вычитания, умножения и деления, а также извлечения корней. Таким образом, в числе 5 есть что-то совершенно особенное. Причины такого необычного поведения пятерки весьма глубоки, и потребовалось немало времени, чтобы в них разобраться.

Первым признаком проблемы стало то, что, как бы математики ни старались отыскать такую формулу, какими бы умными они ни были, они неизменно терпели неудачу. Некоторое время все считали, что причины кроются в неимоверной сложности формулы. Считалось, что никто просто не может как следует разобраться в этой алгебре. Однако со временем некоторые математики начали сомневаться в том, что такая формула вообще существует, а в 1823 г. Нильс Хендрик Абель сумел доказать обратное. Такой формулы не существует. Вскоре после этого Эварист Галуа нашел способ определить, решаемо ли уравнение той или иной степени - 5-й, 6-й, 7-й, вообще любой - с использованием такого рода формулы.

Вывод из всего этого прост: число 5 особенное. Можно решать алгебраические уравнения (при помощи корней n-й степени для различных значений n) для степеней 1, 2, 3 и 4, но не для 5-й степени. Здесь очевидная закономерность заканчивается.

Никого не удивляет, что уравнения степеней больше 5 ведут себя еще хуже; в частности, с ними связана такая же трудность: нет общих формул для их решения. Это не означает, что уравнения не имеют решений; это не означает также, что невозможно найти очень точные численные значения этих решений. Все дело в ограниченности традиционных инструментов алгебры. Это напоминает невозможность трисекции угла при помощи линейки и циркуля. Ответ существует, но перечисленные методы недостаточны и не позволяют определить, каков он.

Кристаллографическое ограничение

Кристаллы в двух и трех измерениях не имеют 5-лучевой симметрии вращения.

Атомы в кристалле образуют решетку, то есть структуру, которая периодически повторяется в нескольких независимых направлениях. К примеру, рисунок на обоях повторяется по длине рулона; кроме того, он обычно повторяется и в горизонтальном направлении, иногда со сдвигом от одного куска обоев к следующему. По существу, обои - это двумерный кристалл.

Существует 17 разновидностей обойных рисунков на плоскости (см. главу 17). Они различаются по типам симметрии, то есть по способам сдвинуть жестко рисунок таким образом, чтобы он точно лег сам на себя в первоначальном положении. К типам симметрии относятся, в частности, различные варианты симметрии вращения, где рисунок следует повернуть на определенный угол вокруг определенной точки - центра симметрии.

Порядок симметрии вращения - это то, сколько раз можно повернуть тело до полного круга так, чтобы все детали рисунка вернулись на первоначальные позиции. К примеру, поворот на 90° - это симметрия вращения 4-го порядка*. Список возможных типов симметрии вращения в кристаллической решетке вновь указывает на необычность числа 5: его там нет. Существуют варианты с симметрией вращения 2, 3, 4 и 6-го порядков, но ни один обойный рисунок не имеет симметрии вращения 5-го порядка. Симметрии вращения порядка больше 6 в кристаллах тоже не бывает, но первое нарушение последовательности происходит все же на числе 5.

То же происходит с кристаллографическими системами в трехмерном пространстве. Здесь решетка повторяет себя по трем независимым направлениям. Существует 219 различных типов симметрии, или 230, если считать зеркальное отражение рисунка отдельным его вариантом - притом, что в данном случае нет зеркальной симметрии. Опять же, наблюдаются симметрии вращения порядков 2, 3, 4 и 6, но не 5. Этот факт получил название кристаллографического ограничения.

В четырехмерном пространстве решетки с симметрией 5-го порядка существуют; вообще, для решеток достаточно высокой размерности возможен любой наперед заданный порядок симметрии вращения.


// Рис. 40. Кристаллическая решетка поваренной соли. Темные шарики изображают атомы натрия, светлые - атомы хлора

Квазикристаллы

Хотя симметрия вращения 5-го порядка в двумерных и трехмерных решетках невозможна, она может существовать в чуть менее регулярных структурах, известных как квазикристаллы. Воспользовавшись набросками Кеплера, Роджер Пенроуз открыл плоские системы с более общим типом пятикратной симметрии. Они получили название квазикристаллов.

Квазикристаллы существуют в природе. В 1984 г. Даниэль Шехтман открыл, что сплав алюминия и марганца может образовывать квазикристаллы; первоначально кристаллографы встретили его сообщение с некоторым скепсисом, но позже открытие было подтверждено, и в 2011 г. Шехтман был удостоен Нобелевской премии по химии. В 2009 г. команда ученых под руководством Луки Бинди обнаружила квазикристаллы в минерале с российского Корякского нагорья - соединении алюминия, меди и железа. Сегодня этот минерал называется икосаэдрит. Измерив при помощи масс-спектрометра содержание в минерале разных изотопов кислорода, ученые показали, что этот минерал возник не на Земле. Он сформировался около 4,5 млрд лет назад, в то время, когда Солнечная система только зарождалась, и провел большую часть времени в поясе астероидов, обращаясь вокруг Солнца, пока какое-то возмущение не изменило его орбиту и не привело его в конце концов на Землю.


// Рис. 41. Слева: одна из двух квазикристаллических решеток с точной пятикратной симметрией. Справа: атомная модель икосаэдрического алюминиево-палладиево-марганцевого квазикристалла

Римский архитектор Витрувий особо выделял теорему Пифагора «из многочисленных открытий, оказавших услуги развитию человеческой жизни», и призывал относиться к ней с величайшим почтением. Было это ещё в I веке до н. э. На рубеже XVI-XVII веков знаменитый немецкий астроном Иоганн Кеплер назвал её одним из сокровищ геометрии, сравнимым с мерой золота. Вряд ли во всей математике найдётся более весомое и значимое утверждение, ведь по числу научных и практических приложений теореме Пифагора нет равных.

Теорема Пифагора для случая равнобедренного прямоугольного треугольника.

Наука и жизнь // Иллюстрации

Иллюстрация к теореме Пифагора из «Трактата об измерительном шесте» (Китай, III век до н. э.) и реконструированное на его основе доказательство.

Наука и жизнь // Иллюстрации

С. Перкинс. Пифагор.

Чертёж к возможному доказательству Пифагора.

«Мозаика Пифагора» и разбиение ан-Найризи трёх квадратов в доказательстве теоремы Пифагора.

П. де Хох. Хозяйка и служанка во внутреннем дворике. Около 1660 года.

Я. Охтервелт. Бродячие музыканты в дверях богатого дома. 1665 год.

Пифагоровы штаны

Теорема Пифагора едва ли не самая узнаваемая и, несомненно, самая знаменитая в истории математики. В геометрии она применяется буквально на каждом шагу. Несмотря на простоту формулировки, эта теорема отнюдь не очевидна: глядя на прямоугольный треугольник со сторонами a < b < c, усмотреть соотношение a 2 + b 2 = c 2 невозможно. Однажды известный американский логик и популяризатор науки Рэймонд Смаллиан, желая подвести учеников к открытию теоремы Пифагора, начертил на доске прямоугольный треугольник и по квадрату на каждой его стороне и сказал: «Представьте, что эти квадраты сделаны из кованого золота и вам предлагают взять себе либо один большой квадрат, либо два маленьких. Что вы выберете?» Мнения разделились пополам, возникла оживлённая дискуссия. Каково же было удивление учеников, когда учитель объяснил им, что никакой разницы нет! Но стоит только потребовать, чтобы катеты были равны, - и утверждение теоремы станет явным (рис. 1). И кто после этого усомнится, что «пифагоровы штаны» во все стороны равны? А вот те же самые «штаны», только в «сложенном» виде (рис. 2). Такой чертёж использовал герой одного из диалогов Платона под названием «Менон», знаменитый философ Сократ, разбирая с мальчиком-рабом задачу на построение квадрата, площадь которого в два раза больше площади данного квадрата. Его рассуждения, по сути, сводились к доказательству теоремы Пифагора, пусть и для конкретного треугольника.

Фигуры, изображённые на рис. 1 и 2, напоминают простейший орнамент из квадратов и их равных частей - геометрический рисунок, известный с незапамятных времён. Им можно сплошь покрыть плоскость. Математик назвал бы такое покрытие плоскости многоугольниками паркетом, или замощением . При чём тут Пифагор? Оказывается, он первым решил задачу о правильных паркетах, с которой началось изучение замощений различных поверхностей. Так вот, Пифагор показал, что плоскость вокруг точки могут покрыть без пробелов равные правильные многоугольники только трёх видов: шесть треугольников, четыре квадрата и три шестиугольника.

4000 лет спустя

История теоремы Пифагора уходит в глубокую древность. Упоминания о ней содержатся ещё в вавилонских клинописных текстах времён царя Хаммурапи (XVIII век до н. э.), то есть за 1200 лет до рождения Пифагора. Теорема применялась как готовое правило во многих задачах, самая простая из которых - нахождение диагонали квадрата по его стороне. Не исключено, что соотношение a 2 + b 2 = c 2 для произвольного прямоугольного треугольника вавилоняне получили, попросту «обобщив» равенство a 2 + a 2 = c 2 . Но им это простительно - для практической геометрии древних, сводившейся к измерениям и вычислениям, строгих обоснований не требовалось.

Теперь, почти 4000 лет спустя, мы имеем дело с теоремой-рекордсменом по количеству всевозможных доказательств. Между прочим, их коллекционирование - давняя традиция. Пик интереса к теореме Пифагора пришёлся на вторую половину XIX - начало XX столетия. И если первые коллекции содержали не более двух-трёх десятков доказательств, то к концу XIX века их число приблизилось к 100, а ещё через полвека превысило 360, и это только тех, что удалось собрать по разным источникам. Кто только не брался за решение этой нестареющей задачи - от именитых учёных и популяризаторов науки до конгрессменов и школьников. И что примечательно, в оригинальности и простоте решения иные любители не уступали профессионалам!

Самым древним из дошедших до нас доказательствам теоремы Пифагора около 2300 лет. Одно из них - строгое аксиоматическое - принадлежит древнегреческому математику Евклиду, жившему в IV-III веках до н. э. В I книге «Начал» теорема Пифагора значится как «Предложение 47». Самые наглядные и красивые доказательства построены на перекраивании «пифагоровых штанов». Они выглядят как хитроумная головоломка на разрезание квадратов. Но заставьте фигуры правильно двигаться - и они откроют вам секрет знаменитой теоремы.

Вот какое изящное доказательство получается на основе чертежа из одного древнекитайского трактата (рис. 3), и сразу проясняется его связь с задачей об удвоении площади квадрата.

Именно такое доказательство пытался объяснить своему младшему другу семилетний Гвидо, не по годам смышлёный герой новеллы английского писателя Олдоса Хаксли «Маленький Архимед». Любопытно, что рассказчик, наблюдавший эту картину, отметил простоту и убедительность доказательства, поэтому приписал его... самому Пифагору. А вот главный герой фантастической повести Евгения Велтистова «Электроник - мальчик из чемодана» знал 25 доказательств теоремы Пифагора, в том числе данное Евклидом; правда, ошибочно назвал его простейшим, хотя на самом деле в современном издании «Начал» оно занимает полторы страницы!

Первый математик

Пифагора Самосского (570-495 годы до н. э.), чьё имя давно и неразрывно связано с замечательной теоремой, в известном смысле можно назвать первым математиком. Именно с него математика начинается как точная наука, где всякое новое знание - результат не наглядных представлений и вынесенных из опыта правил, а итог логических рассуждений и выводов. Лишь так можно раз и навсегда установить истинность любого математического предложения. До Пифагора дедуктивный метод применял только древнегреческий философ и учёный Фалес Милетский, живший на рубеже VII-VI веков до н. э. Он высказал саму идею доказательства, но применял его не систематически, избирательно, как правило, к очевидным геометрическим утверждениям типа «диаметр делит круг пополам». Пифагор продвинулся гораздо дальше. Считается, что он ввёл первые определения, аксиомы и методы доказательства, а также создал первый курс геометрии, известный древним грекам под названием «Предание Пифагора». А ещё он стоял у истоков теории чисел и стереометрии.

Другая важная заслуга Пифагора - основание славной школы математиков, которая более столетия определяла развитие этой науки в Древней Греции. С его именем связывают и сам термин «математика» (от греческого слова μαθημa - учение, наука), объединивший четыре родственные дисциплины созданной Пифагором и его приверженцами - пифагорейцами - системы знаний: геометрию, арифметику, астрономию и гармонику.

Отделить достижения Пифагора от достижений его учеников невозможно: следуя обычаю, они приписывали собственные идеи и открытия своему Учителю. Никаких сочинений ранние пифагорейцы не оставили, все сведения они передавали друг другу устно. Так что 2500 лет спустя историкам не остаётся ничего иного, кроме как реконструировать утраченные знания по переложениям других, более поздних авторов. Отдадим должное грекам: они хоть и окружали имя Пифагора множеством легенд, однако не приписывали ему ничего такого, чего он не мог бы открыть или развить в теорию. И носящая его имя теорема не исключение.

Такое простое доказательство

Неизвестно, Пифагор сам обнаружил соотношение между длинами сторон в прямоугольном треугольнике или позаимствовал это знание. Античные авторы утверждали, что сам, и любили пересказывать легенду о том, как в честь своего открытия Пифагор принёс в жертву быка. Современные историки склонны считать, что он узнал о теореме, познакомившись с математикой вавилонян. Не знаем мы и о том, в каком виде Пифагор формулировал теорему: арифметически, как принято сегодня, - квадрат гипотенузы равен сумме квадратов катетов, или геометрически, в духе древних, - квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.

Считается, что именно Пифагор дал первое доказательство теоремы, носящей его имя. Оно, конечно, не сохранилось. По одной из версий, Пифагор мог воспользоваться разработанным в его школе учением о пропорциях. На нём основывалась, в частности, теория подобия, на которую опираются рассуждения. Проведём в прямоугольном треугольнике с катетами a и b высоту к гипотенузе c. Получим три подобных треугольника, включая исходный. Их соответствующие стороны пропорциональны, a: с = m: a и b: c = n: b, откуда a 2 = c · m и b 2 = c · n. Тогда a 2 + b 2 = = c · (m + n) = c 2 (рис. 4).

Это всего лишь реконструкция, предложенная одним из историков науки, но доказательство, согласитесь, совсем простое: занимает всего-то несколько строк, не нужно ничего достраивать, перекраивать, вычислять... Неудивительно, что его не раз переоткрывали. Оно содержится, например, в «Практике геометрии» Леонардо Пизанского (1220), и его до сих пор приводят в учебниках.

Такое доказательство не противоречило представлениям пифагорейцев о соизмеримости: изначально они считали, что отношение длин любых двух отрезков, а значит, и площадей прямолинейных фигур, можно выразить с помощью натуральных чисел. Никакие другие числа они не рассматривали, не допускали даже дробей, заменив их отношениями 1: 2, 2: 3 и т. д. Однако, по иронии судьбы, именно теорема Пифагора привела пифагорейцев к открытию несоизмеримости диагонали квадрата и его стороны. Все попытки численно представить длину этой диагонали - у единичного квадрата она равна √2 - ни к чему не привели. Проще оказалось доказать, что задача неразрешима. На такой случай у математиков есть проверенный метод - доказательство от противного. Кстати, и его приписывают Пифагору.

Существование отношения, не выражаемого натуральными числами, положило конец многим представлениям пифагорейцев. Стало ясно, что известных им чисел недостаточно для решения даже несложных задач, что уж говорить обо всей геометрии! Это открытие стало поворотным моментом в развитии греческой математики, её центральной проблемой. Сначала оно привело к разработке учения о несоизмеримых величинах - иррациональностях, а затем - и к расширению понятия числа. Иными словами, с него началась многовековая история исследования множества действительных чисел.

Мозаика Пифагора

Если покрыть плоскость квадратами двух разных размеров, окружив каждый малый квадрат четырьмя большими, получится паркет «мозаика Пифагора». Такой рисунок издавна украшает каменные полы, напоминая о древних доказательствах теоремы Пифагора (отсюда его название). По-разному накладывая на паркет квадратную сетку, можно получить разбиения квадратов, построенных на сторонах прямоугольного треугольника, которые предлагались разными математиками. Например, если расположить сетку так, чтобы все её узлы совпали с правыми верхними вершинами малых квадратов, проявятся фрагменты чертежа к доказательству средневекового персидского математика ан-Найризи, которое он поместил в комментариях к «Началам» Евклида. Легко видеть, что сумма площадей большого и малого квадратов, исходных элементов паркета, равна площади одного квадрата наложенной на него сетки. А это означает, что указанное разбиение действительно пригодно для укладки паркета: соединяя в квадраты полученные многоугольники, как показано на рисунке, можно заполнить ими без пробелов и перекрытий всю плоскость.