Графики элементарных функций. Построение графиков онлайн


Знание основных элементарных функций, их свойств и графиков не менее важно, чем знание таблицы умножения. Они как фундамент, на них все основано, из них все строится и к ним все сводится.

В этой статье мы перечислим все основные элементарные функции, приведем их графики и дадим без вывода и доказательств свойства основных элементарных функций по схеме:

  • поведение функции на границах области определения, вертикальные асимптоты (при необходимости смотрите статью классификация точек разрыва функции);
  • четность и нечетность;
  • промежутки выпуклости (выпуклости вверх) и вогнутости (выпуклости вниз), точки перегиба (при необходимости смотрите статью выпуклость функции, направление выпуклости, точки перегиба, условия выпуклости и перегиба);
  • наклонные и горизонтальные асимптоты;
  • особые точки функций;
  • особые свойства некоторых функций (например, наименьший положительный период у тригонометрических функций).

Если Вас интересует или , то можете перейти к этим разделам теории.

Основными элементарными функциями являются: постоянная функция (константа), корень n -ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Навигация по странице.

Постоянная функция.

Постоянная функция задается на множестве всех действительных чисел формулой , где C – некоторое действительное число. Постоянная функция ставит в соответствие каждому действительному значению независимой переменной x одно и то же значение зависимой переменной y – значение С . Постоянную функцию также называют константой.

Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку с координатами (0,C) . Для примера покажем графики постоянных функций y=5 , y=-2 и , которым на рисунке, приведенном ниже, отвечают черная, красная и синяя прямые соответственно.

Свойства постоянной функции.

  • Область определения: все множество действительных чисел.
  • Постоянная функция является четной.
  • Область значений: множество, состоящее из единственного числа С .
  • Постоянная функция невозрастающая и неубывающая (на то она и постоянная).
  • Говорить о выпуклости и вогнутости постоянной не имеет смысла.
  • Асимптот нет.
  • Функция проходит через точку (0,C) координатной плоскости.

Корень n -ой степени.

Рассмотрим основную элементарную функцию, которая задается формулой , где n – натуральное число, большее единицы.

Корень n -ой степени, n - четное число.

Начнем с функции корень n -ой степени при четных значениях показателя корня n .

Для примера приведем рисунок с изображениями графиков функций и , им соответствуют черная, красная и синяя линии.


Аналогичный вид имеют графики функций корень четной степени при других значениях показателя.

Свойства функции корень n -ой степени при четных n .

Корень n -ой степени, n - нечетное число.

Функция корень n -ой степени с нечетным показателем корня n определена на всем множестве действительных чисел. Для примера приведем графики функций и , им соответствуют черная, красная и синяя кривые.


При других нечетных значениях показателя корня графики функции будут иметь схожий вид.

Свойства функции корень n -ой степени при нечетных n .

Степенная функция.

Степенная функция задается формулой вида .

Рассмотрим вид графиков степенной функции и свойства степенной функции в зависимости от значения показателя степени.

Начнем со степенной функции с целым показателем a . В этом случае вид графиков степенных функций и свойства функций зависят от четности или нечетности показателя степени, а также от его знака. Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a , далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a .

Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a . Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.

В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.

Степенная функция с нечетным положительным показателем.

Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,… .

На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1 имеем линейную функцию y=x .

Свойства степенной функции с нечетным положительным показателем.

Степенная функция с четным положительным показателем.

Рассмотрим степенную функцию с четным положительным показателем степени, то есть, при а=2,4,6,… .

В качестве примера приведем графики степенных функций – черная линия, – синяя линия, – красная линия. При а=2 имеем квадратичную функцию, графиком которой является квадратичная парабола .

Свойства степенной функции с четным положительным показателем.

Степенная функция с нечетным отрицательным показателем.

Посмотрите на графики степенной функции при нечетных отрицательных значениях показателя степени, то есть, при а=-1,-3,-5,… .

На рисунке в качестве примеров показаны графики степенных функций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=-1 имеем обратную пропорциональность , графиком которой является гипербола .

Свойства степенной функции с нечетным отрицательным показателем.

Степенная функция с четным отрицательным показателем.

Перейдем к степенной функции при а=-2,-4,-6,… .

На рисунке изображены графики степенных функций – черная линия, – синяя линия, – красная линия.

Свойства степенной функции с четным отрицательным показателем.

Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.

Обратите внимание! Если a - положительная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными положительными показателями степени множество . Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Рассмотрим степенную функцию с рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций при а=11/12 (черная линия), а=5/7 (красная линия), (синяя линия), а=2/5 (зеленая линия).

Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.

Рассмотрим степенную функцию с нецелым рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций, заданных формулами (черная, красная, синяя и зеленая линии соответственно).

>

При других значениях показателя степени a , графики функции будут иметь схожий вид.

Свойства степенной функции при .

Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.

Обратите внимание! Если a - отрицательная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными дробными отрицательными показателями степени множество соответственно. Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Переходим к степенной функции , кгода .

Чтобы хорошо представлять вид графиков степенных функций при , приведем примеры графиков функций (черная, красная, синяя и зеленая кривые соответственно).

Свойства степенной функции с показателем a , .

Степенная функция с нецелым действительным показателем, который меньше минус единицы.

Приведем примеры графиков степенных функций при , они изображены черной, красной, синей и зеленой линиями соответственно.

Свойства степенной функции с нецелым отрицательным показателем, меньшим минус единицы.

При а=0 и имеем функцию - это прямая из которой исключена точка (0;1) (выражению 0 0 условились не придавать никакого значения).

Показательная функция.

Одной из основных элементарных функций является показательная функция.

График показательной функции , где и принимает различный вид в зависимости от значения основания а . Разберемся в этим.

Сначала рассмотрим случай, когда основание показательной функции принимает значение от нуля до единицы, то есть, .

Для примера приведем графики показательной функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. Аналогичный вид имеют графики показательной функции при других значениях основания из интервала .

Свойства показательной функции с основанием меньшим единицы.

Переходим к случаю, когда основание показательной функции больше единицы, то есть, .

В качестве иллюстрации приведем графики показательных функций – синяя линия и – красная линия. При других значениях основания, больших единицы, графики показательной функции будут иметь схожий вид.

Свойства показательной функции с основанием большим единицы.

Логарифмическая функция.

Следующей основной элементарной функцией является логарифмическая функция , где , . Логарифмическая функция определена лишь для положительных значений аргумента, то есть, при .

График логарифмической функции принимает различный вид в зависимости от значения основания а .

Начнем со случая, когда .

Для примера приведем графики логарифмической функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. При других значениях основания, не превосходящих единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием меньшим единицы.

Перейдем к случаю, когда основание логарифмической функции больше единицы ().

Покажем графики логарифмических функций – синяя линия, – красная линия. При других значениях основания, больших единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием большим единицы.

Тригонометрические функции, их свойства и графики.

Все тригонометрические функции (синус, косинус, тангенс и котангенс) относятся к основным элементарным функциям. Сейчас мы рассмотрим их графики и перечислим свойства.

Тригонометрическим функциям присуще понятие периодичности (повторяемости значений функции при различных значениях аргумента, отличных друг от друга на величину периода , где Т - период), поэтому, в список свойств тригонометрических функций добавлен пункт «наименьший положительный период» . Также для каждой тригонометрической функции мы укажем значения аргумента, при которых соответствующая функция обращается в ноль.

Теперь разберемся со всеми тригонометрическими функциями по порядку.

Функция синус y = sin(x) .

Изобразим график функции синус, его называют "синусоида".


Свойства функции синус y = sinx .

Функция косинус y = cos(x) .

График функции косинус (его называют "косинусоида") имеет вид:


Свойства функции косинус y = cosx .

Функция тангенс y = tg(x) .

График функции тангенс (его называют "тангенсоида") имеет вид:

Свойства функции тангенс y = tgx .

Функция котангенс y = ctg(x) .

Изобразим график функции котангенс (его называют "котангенсоида"):

Свойства функции котангенс y = ctgx .

Обратные тригонометрические функции, их свойства и графики.

Обратные тригонометрические функции (арксинус, арккосинус, арктангенс и арккотангенс) являются основным элементарным функциями. Часто из-за приставки "арк" обратные тригонометрические функции называют аркфункциями. Сейчас мы рассмотрим их графики и перечислим свойства.

Функция арксинус y = arcsin(x) .

Изобразим график функции арксинус:

Свойства функции арккотангенс y = arcctg(x) .

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват учреждений.
  • Выгодский М.Я. Справочник по элементарной математике.
  • Новоселов С.И. Алгебра и элементарные функции.
  • Туманов С.И. Элементарная алгебра. Пособие для самообразования.

Национальный научно-исследовательский университет

Кафедра прикладной геологии

Реферат по высшей математике

На тему: «Основные элементарные функции,

их свойства и графики»

Выполнил:

Проверил:

преподаватель

Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции:

1. Область определения - множество (R) всех действительных чисел.

2. Область значений - множество (R+) всех положительных действительных чисел.

3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.

4. Является функцией общего вида.

, на интервале xÎ [-3;3] , на интервале xÎ [-3;3]

Функция вида у(х)=х n , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

Степенная функция у=х²

1. D(x)=R – функция определена на все числовой оси;

2. E(y)= и возрастает на промежутке

Степенная функция у=х³

1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

2. D(x)=R – функция определена на все числовой оси;

3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

4. При х=0 у=0 – функция проходит через начало координат O(0;0).

5. Функция возрастает на всей области определения.

6. Функция является нечетной (симметрична относительно начала координат).

, на интервале xÎ [-3;3]

В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

Степенная функция с целым отрицательным показателем:

Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

1. D(x)=(-∞;0)U(0;∞) для любого n;

2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.

, на интервале xÎ [-3;3]

Степенная функция с дробным показателем

Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

1. D(x) ÎR, если n – нечетное число и D(x)= , на интервале xÎ , на интервале xÎ [-3;3]

Логарифмическая функция у = log a x обладает следующими свойствами:

1. Область определения D(x)Î (0; + ∞).

2. Область значений E(y) Î (- ∞; + ∞)

3. Функция ни четная, ни нечетная (общего вида).

4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.

График функции у = log a x может быть получен из графика функции у = а х с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.

; на интервале xÎ ; на интервале xÎ

Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.

Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.

Функция y = sin (х).

1. Область определения D(x) ÎR.

2. Область значений E(y) Î [ - 1; 1].

3. Функция периодическая; основной период равен 2π.

4. Функция нечетная.

5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.

График функции у = sin (х) изображен на рисунке 11.

Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции
  • область значений функции
  • нули функции
  • промежутки возрастания и убывания
  • точки максимума и минимума
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса - это координата точки по горизонтали.
Ордината - координата по вертикали.
Ось абсцисс - горизонтальная ось, чаще всего называемая ось .
Ось ординат - вертикальная ось, или ось .

Аргумент - независимая переменная, от которой зависят значения функции. Чаще всего обозначается .
Другими словами, мы сами выбираем , подставляем в формулу функции и получаем .

Область определения функции - множество тех (и только тех) значений аргумента , при которых функция существует.
Обозначается: или .

На нашем рисунке область определения функции - это отрезок . Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции - это множество значений, которые принимает переменная . На нашем рисунке это отрезок - от самого нижнего до самого верхнего значения .

Нули функции - точки, где значение функции равно нулю, то есть . На нашем рисунке это точки и .

Значения функции положительны там, где . На нашем рисунке это промежутки и .
Значения функции отрицательны там, где . У нас это промежуток (или интервал) от до .

Важнейшие понятия - возрастание и убывание функции на некотором множестве . В качестве множества можно взять отрезок , интервал , объединение промежутков или всю числовую прямую.

Функция возрастает

Иными словами, чем больше , тем больше , то есть график идет вправо и вверх.

Функция убывает на множестве , если для любых и , принадлежащих множеству , из неравенства следует неравенство .

Для убывающей функции большему значению соответствует меньшее значение . График идет вправо и вниз.

На нашем рисунке функция возрастает на промежутке и убывает на промежутках и .

Определим, что такое точки максимума и минимума функции .

Точка максимума - это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума - такая точка, значение функции в которой больше , чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке - точка максимума.

Точка минимума - внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума - такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке - точка минимума.

Точка - граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции . В нашем случае это и .

А что делать, если нужно найти, например, минимум функции на отрезке ? В данном случае ответ: . Потому что минимум функции - это ее значение в точке минимума.

Аналогично, максимум нашей функции равен . Он достигается в точке .

Можно сказать, что экстремумы функции равны и .

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке равно и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно . Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

После того, как вы действительно поймете, что такое функция (возможно, придется прочитать урок не один раз) вы с бóльшей уверенностью сможете решать задания с функциями.

В этом уроке мы разберем, как решать основные типы задач на функцию и графики функций.

Как получить значение функции

Рассмотрим задание. Функция задана формулой «y = 2x − 1 »

  1. Вычислить «y » при «x = 15 »
  2. Найти значение «x », при котором значение «y » равно «−19 ».

Для того, чтобы вычислить «y » при «x = 15 » достаточно подставить в функцию вместо «x » необходимое числовое значение.

Запись решения выглядит следующим образом.

y(15) = 2 · 15 − 1 = 30 − 1 = 29

Для того, чтобы найти «x » по известному «y », необходимо подставить вместо «y » в формулу функции числовое значение.

То есть теперь наоборот, для поиска «x » мы подставляем в функцию «y = 2x − 1 » вместо «y » число «−19 » .

−19 = 2x − 1

Мы получили линейное уравнение с неизвестным «x », которое решается по правилам решения линейных уравнений.

Запомните!

Не забывайте про правило переноса в уравнениях.

При переносе из левой части уравнения в правую (и наоборот) буква или число меняет знак на противоположный .

−19 = 2x − 1
0 = 2x − 1 + 19
−2x = −1 + 19
−2x = 18

Как и при решении линейного уравнения, чтобы найти неизвестное, сейчас требуется умножить и левую, и правую часть на «−1 » для смены знака.

−2x = 18 | · (−1)
2x = −18

Теперь разделим и левую, и правую часть на «2 », чтобы найти «x » .

2x = 18 | (: 2)
x = 9

Как проверить верно ли равенство для функции

Рассмотрим задание. Функция задана формулой «f(x) = 2 − 5x ».

Верно ли равенство «f(−2) = −18 »?

Чтобы проверить верно ли равенство, нужно подставить в функцию «f(x) = 2 − 5x » числовое значение «x = −2 » и сопоставить с тем, что получится при расчетах.

Важно!

Когда подставляете отрицательное число вместо «x », обязательно заключайте его в скобки.

Неправильно

Правильно

С помощью расчетов мы получили «f(−2) = 12 ».

Это означает, что «f(−2) = −18 » для функции «f(x) = 2 − 5x » не является верным равенством.

Как проверить, что точка принадлежит графику функции

Рассмотрим функцию «y = x 2 −5x + 6 »

Требуется выяснить, принадлежит ли графику этой функции точка с координатами (1; 2) .

Для этой задачи нет необходимости, строить график заданной функции.

Запомните!

Чтобы определить, принадлежит ли точка функции, достаточно подставить её координаты в функцию (координату по оси «Ox » вместо «x » и координату по оси «Oy » вместо «y »).

Если получится верное равенство , значит, точка принадлежит функции.

Вернемся к нашему заданию. Подставим в функцию «y = x 2 − 5x + 6 » координаты точки (1; 2) .

Вместо «x » подставим «1 ». Вместо «y » подставим «2 ».

2 = 1 2 − 5 · 1 + 6
2 = 1 − 5 + 6
2 = −4 + 6
2 = 2 (верно)

У нас получилось верное равенство, значит, точка с координатами (1; 2) принадлежит заданной функции.

Теперь проверим точку с координатами (0; 1) . Принадлежит ли она
функции «y = x 2 − 5x + 6 »?

Вместо «x » подставим «0 ». Вместо «y » подставим «1 ».

1 = 0 2 − 5 · 0 + 6
1 = 0 − 0 + 6
1 = 6 (неверно)

В этом случае мы не получили верное равенство. Это означает, что точка с координатами (0; 1) не принадлежит функции «y = x 2 − 5x + 6 »

Как получить координаты точки функции

С любого графика функции можно снять координаты точки. Затем необходимо убедиться, что при подстановке координат в формулу функции получается верное равенство.

Рассмотрим функцию «y(x) = −2x + 1 ». Её график мы уже строили в предыдущем уроке .


Найдем на графике функции «y(x) = −2x + 1 », чему равен «y » при x = 2 .

Для этого из значения «2 » на оси «Ox » проведем перпендикуляр к графику функции. Из точки пересечения перпендикуляра и графика функции проведем еще один перпендикуляр к оси «Oy ».


Полученное значение «−3 » на оси «Oy » и будет искомым значением «y ».

Убедимся, что мы правильно сняли координаты точки для x = 2
в функции «y(x) = −2x + 1 ».

Для этого мы подставим x = 2 в формулу функции «y(x) = −2x + 1 ». Если мы правильно провели перпендикуляр, мы также должны получить в итоге y = −3 .

y(2) = −2 · 2 + 1 = −4 + 1 = −3

При расчетах мы также получили y = −3 .

Значит, мы правильно получили координаты с графика функции.

Важно!

Все полученные координаты точки с графика функции обязательно проверяйте подстановкой значений «x » в функцию.

При подстановке числового значения «x » в функцию в результате должно получиться то же значение «y », которое вы получили на графике.

При получении координат точек с графика функции высока вероятность, что вы ошибетесь, т.к. проведение перпендикуляра к осям выполняется «на глазок».

Только подстановка значений в формулу функции дает точные результаты.