Что входит в нервную систему органов. Из чего состоит нервная система человека? Заболевания нервной системы

В человеческом организме существует несколько систем, включая пищеварительную, сердечно-сосудистую и мышечную. Отдельного внимания заслуживает нервная – она заставляет человеческий организм двигаться, реагировать на раздражающие факторы, видеть и мыслить.

Нервная система человека – совокупность структур, которая выполняет функцию регуляции абсолютно всех частей организма , отвечает за движения и чувствительность.

Вконтакте

Виды нервной системы человека

Перед тем как отвечать на интересующих людей вопрос: «как работает нервная система», необходимо разобраться, из чего она собственно состоит и на какие составляющие ее принято разделять в медицине.

С видами НС далеко не все так однозначно – ее классифицируют по нескольким параметрам:

  • область локализации;
  • вид управления;
  • способ передачи информации;
  • функциональная принадлежность.

Область локализации

Нервная система человека по области локализации бывает центральная и периферическая . Первая представлена головным и костным мозгом, а вторая состоит из нервов и вегетативной сети.

ЦНС выполняет функции регуляции всеми внутренними и внешними органами. Она заставляет их взаимодействовать между собой. Периферической называют ту, которая в связи с анатомическими особенностями находится за пределами спинного и головного мозга.

Как работает нервная система? ПНС реагирует на раздражающие факторы, отправляя сигналы в спинной, а после и головной мозг. После органы ЦНС обрабатывают их и вновь посылают сигналы в ПНС, которая приводит, к примеру, мышцы ноги в движение.

Способ передачи информации

По данному принципу выделяют рефлекторную и нейрогуморальную системы . Первая – это спинной мозг, который без участия головного способен реагировать на раздражители.

Интересно! Человек не контролирует рефлекторную функцию, так как спинной мозг сам принимает решения. К примеру, когда вы прикасаетесь в горячей поверхности, ваша рука сразу же отдергивается, и при этом вы даже не думали совершить это движение – сработали ваши рефлексы.

Нейрогуморальная, к которой относится головной мозг, должна изначально обработать информацию, данный процесс вы можете контролировать. После этого сигналы отправляются в ПНС, которая выполняет команды вашего мозгового центра.

Функциональная принадлежность

Говоря про части нервной системы, нельзя не упомянуть вегетативную, которая в свою очередь разделена на симпатическую, соматическую и парасимпатическую.

Вегетативная система (ВНС) – это отдел, который отвечает за регуляцию работы лимфатических узлов, кровеносных сосудов, органов и желез (внешней и внутренней секреции).

Соматическая система – это совокупность нервов, которые находятся в костях, мышцах и коже. Именно они реагируют на все факторы окружающей среды и отправляют данные в мозговой центр, а после выполняют его приказы. Абсолютно каждое движение мышц контролируется соматическими нервами.

Интересно! Правой частью нервов и мышц управляет левое полушарие, а левой – правое.

Симпатическая система отвечает за выброс адреналина в кровь, контролирует работу сердца , легких и поступление питательных веществ во все части организма. Кроме того, она регулирует насыщение тела .

Парасимпатическая отвечает за уменьшение частоты движений , также контролирует работу легких, некоторых желез, радужной оболочки. Не менее важная задача – регулирование пищеварения.

Вид управления

Еще одну подсказку на вопрос «как работает нервная система» может дать удобная классификация по видам управления. Ее разделяют на высшую и низшую деятельность.

Высшая деятельность контролирует поведение в окружающей среде. Вся интеллектуальная и творческая деятельность также относится к высшей.

Низшая деятельность – это регуляция всех функций внутри человеческого организма. Данный вид деятельности делает все системы организма единым целым.

Строение и функции НС

Мы уже разобрались, что всю НС следует разделять на периферическую, центральную, вегетативную и все вышеперечисленные, но еще многое нужно сказать об их строении и функциях.

Спинной мозг

Данный орган находится в позвоночном канале и по сути является этаким «канатом» из нервов. Его разделяют на серое и белое вещество, где первое полностью покрыто вторым.

Интересно! В разрезе заметно, что серое вещество сплетено из нервов таким образом, что напоминает бабочку. Именно поэтому его часто называют «крыльями бабочки».

В общей сложности спинной мозг состоит из 31 отдела , каждый из которых отвечает за отдельную группу нервов, контролирующих определенные мышцы.

Спинной мозг, как уже говорилось, может работать без участия головного – речь о идет рефлексах, которые не поддаются регуляции. В ту же очередь он находится под контролем органа мышления и выполняет проводниковую функцию.

Головной мозг

Данный орган является наименее исследованным, многие его функции до сих вызывают множество вопросов в ученых кругах. Он разделен на пять отделов:

  • большие полушария (передний мозг);
  • промежуточный;
  • продолговатый;
  • задний;
  • средний.

Первый отдел составляет 4/5 всей массы органа. Он отвечает за зрение, обоняние, движения, мышление, слух, чувствительность. Продолговатый мозг – невероятно важный центр, который регулирует такие процессы, как сердцебиение, дыхание, защитные рефлексы , выделение желудочного сока и другие.

Средний отдел контролирует такую функцию, как . Промежуточный играет роль в формировании эмоционального состояния. Также здесь находятся центры, отвечающие за терморегуляцию и обмен веществ в организме.

Строение головного мозга

Строение нерва

НС – это совокупность миллиардов специфических клеток. Чтобы разобраться, как работает нервная система, необходимо поговорить о ее строении.

Нерв – это структура, которая состоит из определенного количества волокон. Те же в свою очередь состоят из аксонов – именно они являются проводниками всех импульсов.

Количество волокон в одном нерве может существенно отличается. Обычно оно составляет около одной сотни, а вот в человеческом глазу находится более 1,5 млн. волокон.

Сами же аксоны покрыты специальной оболочкой, которая значительно увеличивает скорость сигнала – это позволяет человеку реагировать на раздражители чуть ли не моментально.

Сами нервы также бывают различными, а потому их классифицируют на следующие типы:

  • двигательные (передают информацию из ЦНС в мышечную систему);
  • черепные (сюда входят зрительные, обонятельные и другие виды нервов);
  • чувствительные (передают информацию от ПНС к ЦНС);
  • спинные (находятся в и управляют частями тела);
  • смешанные (способны передавать информацию в два направления).

Строение нервного ствола

Мы уже разобрались в таких темах, как «Виды нервной системы человека» и «Как работает нервная система», но в стороне осталось много интересных фактов, которые достойны упоминания:

  1. Количество в нашем организме больше, нежели число людей на всей планете Земля.
  2. В головном мозге находится порядком 90–100 млрд. нейронов. Если все их связать в одну линию, то она достигнет порядка 1 тыс. км.
  3. Скорость движения импульсов достигает практически 300 км/час.
  4. После наступления полового созревания масса органа мышления с каждым годом уменьшается приблизительно на один грамм .
  5. У мужчин головной мозг приблизительно на 1/12 больше, нежели женский.
  6. Самый большой орган мышления был зафиксирован у психически больного.
  7. Клетки ЦНС практически не подлежат восстановлению, а сильные стрессы и волнения способны серьезно уменьшить их количество.
  8. До сих пор наука не определила, на сколько процентов мы используем свой главный мыслительный орган. Известными являются мифы, что не более 1%, а гении – не больше 10%.
  9. Размер органа мышления нисколько не влияет на умственную деятельность . Ранее считалось, что мужчины умнее представительниц прекрасного пола, но данное утверждение было опровергнуто в конце ХХ века.
  10. Алкогольные напитки очень сильно подавляют функцию синапсов (место контактов между нейронами), что в разы замедляет мыслительные и двигательные процессы.

Мы узнали, что же такое нервная система человека – это сложная совокупностью миллиардов клеток, которые взаимодействуют между собой со скоростью, равной движению самых быстрых автомобилей в мире.

Среди многих видов клеток эти восстанавливаются сложнее всего, а некоторые их подвиды и вовсе не поддаются восстановлению. Именно потому они прекрасно защищены черепом и позвоночными костями.

Интересен также тот факт, что болезни НС являются наименее подающимися лечению. Современная медицина в основном только способна замедлить гибель клеток, а вот остановить данный процесс невозможно . Многие другие виды клеток с помощью специальных препаратов можно защитить от разрушения на долгие годы – к примеру, клетки печени. В это время клетки эпидермиса (кожи) способны регенерировать в считанные дни или недели до прежнего состояния.

Нервная система — спинной мозг (8 класс) — биология, подготовка к ЕГЭ и ОГЭ

Нервная система человека. Строение и функции

Вывод

Абсолютно любое движение, каждая мысль, взгляд, вздох и удар сердца – все это контролируется сетью нервов. Она отвечает за взаимодействие человека с окружающим миром и связывает все остальные органы в единое целое – организм.

Нервная система состоит из спинного и головного мозга, органов чувств, и всех нервных клеток, которые соединяют эти органы с остальной частью тела. Все вместе эти органы несут ответственность за контроль тела и связь между его частями. Головной и спинной мозг образуют центр управления, известный как центральная нервная система (ЦНС), где оценивается информация и принимаются решения. Чувствительные нервы и органы чувств периферической нервной системы (ПНС) следят за … [Читайте ниже]

  • Голова и шея
  • Грудь и верх спины
  • Таз и низ спины
  • Руки и кисти
  • Ноги и стопы

[Начало сверху] … условиями внутри и снаружи тела и отправляют эту информацию в ЦНС. Эфферентные нервы в ПНС несут сигналы от центра управления к мышцам, железам и органам, чтобы регулировать их функции.

Нервная ткань

Большинство тканей нервной системы состоят из двух классов клеток: нейронов и нейроглии.

Нейроны, также известные как нервные клетки, связываются в организме за счет передачи электрохимических сигналов. Нейроны довольно сильно отличаются от других клеток в организме из — за многих сложных клеточных процессов, которые происходят в их центральной части тела. Тело клетки является приблизительно круглой частью нейрона, который содержит ядро, митохондрии и большинство клеточных органелл. Малые древовидные структуры, называемые дендриты простираются от тела клетки для приёма раздражения из окружающей среды, их называют рецепторами.Передающие нервные клетки называются аксонами, они отходят от тела клетки, чтобы посылать сигналы вперед к другим нейронам или эффекторным клеткам в организме.

Есть 3 основных класса нейронов: афферентные нейроны, эфферентные нейроны и интернейроны.
Афферентные нейроны. Также известны как сенсорные нейроны, они передают афферентные сенсорные сигналы в центральную нервную систему от рецепторов в организме.

Эфферентные нейроны. Также известные как двигательные нейроны, эфферентные нейроны передают сигналы от центральной нервной системы к эффекторам в организме, таким как мышцы и железы.

Интернейроны. Интернейроны образуют сложные сети в центральной нервной системе, чтобы интегрировать информацию, полученную от афферентных нейронов и направлять функцию организма через эфферентные нейроны.
Нейроглия. Нейроглия, также известна как глиальные клетки, действует как «посредник» клеток нервной системы. Каждый нейрон в организме окружена где — то от 6 до 60 нейроглиями, которые защищают, питают и изолируют нейрон. Поскольку нейроны чрезвычайно специализированные клетки, которые необходимы для функционирования организма и почти никогда не размножаются, нейроглии имеют жизненно важное значение для поддержания функциональной нервной системы.

Головной мозг

Мозг — мягкий, морщинистый орган, который весит около 1,2 кг., находится внутри полости черепа, где кости черепа окружают и защищают его. Приблизительно 100 миллиардов нейронов головного мозга образуют главный центр управления тела. Мозг и спинной мозг вместе образуют центральную нервную систему (ЦНС), где обрабатывается информация и формируются ответы. Мозг — место высших психических функций, таких, как сознание, память, планирование и добровольные действия, а также он контролирует низшие функции организма, такие как поддержание дыхания, частота сердечных сокращений, артериальное давление и пищеварение.
Спинной мозг
Он является длинной, тонкой массой сгруппированных нейронов, которые несут в себе информацию, расположен он в полости позвоночника. Начинающийся в продолговатом мозге на его верхнем конце и продолжающийся книзу в поясничной области позвоночника. В поясничной области, спинной мозг разделяется на пучок отдельных нервов, который называется конским хвостом (из — за его сходства с хвостом лошади), который продолжается книзу до крестца и копчика. Белое вещество спинного мозга выступает в качестве основного канала — проводника нервных сигналов к телу из мозга. Серое вещество спинного мозга интегрирует рефлексы на раздражители.

Нервы

Нервы — пучки аксонов периферической нервной системы (ПНС), которые выступают в качестве информационных каналов для передачи сигналов между мозгом головным и спинным, а также остальной частью тела. Каждый аксон, завернутый в оболочку соединительной ткани называется эндоневрит. Отдельные аксоны, сгруппированные в группы аксонов, так называемые пучки, обернуты в оболочку из соединительной ткани и называются — периневрий. И, наконец, многие пучки упаковываются вместе в другой слой соединительной ткани, называемый эпиневрий, чтобы сформировать весь нерв. Оберточный покров нервов соединительной тканью, помогает защитить аксоны и увеличить скорость их передачи в пределах тела.

Афферентные, эфферентные и смешанные нервы.
Некоторые из нервов в организме специализированы для переноса информации только в одном направлении, похожие на улицу с односторонним движением. Нервы, которые несут информацию от сенсорных рецепторов только в центральную нервную систему, называются афферентными нейронами. Другие нейроны, известные как эфферентные, несут сигналы только от центральной нервной системы к эффекторам, таким как мышцы и железы. Наконец, некоторые нервы — смешанного типа, которые содержат как афферентные, так и эфферентные аксоны. Смешанные функции нервов, как 2 улицы с односторонним движением, где афферентные аксоны выступают в качестве полосы к центральной нервной системе, а эфферентные аксоны выступают в качестве полосы в сторону от центральной нервной системы.

Черепно — мозговые нервы.
Простираются от нижней стороны мозга 12 пар черепных нервов. Каждая пара черепных нервов определяется римской цифрой от 1 до 12, на основании его расположения вдоль передне — задней оси головного мозга. Каждый нерв также имеет описательное имя (например, обонятельный, зрительный и т. д.), который идентифицирует его функцию или местоположение. Черепно — мозговые нервы обеспечивают прямое подключение к мозгу для специальных органов чувств, мышц головы, шеи и плеч, сердца и желудочно — кишечного тракта.

Спинномозговые нервы.
С левой и правой стороны спинного мозга расположены 31 пара спинномозговых нервов. Спинномозговые нервы — смешанные нервы, которые несут как сенсорные, так и моторные сигналы между спинным мозгом и конкретными областями тела. 31 пары нервов спинного мозга разделены на 5 групп, названных в честь 5 — ти областей позвоночного столба. Таким образом, есть 8 пар шейных нервов, 12 пар грудных нервов, 5 пар поясничных нервов, 5 пар крестцовых нервов и 1 пара копчиковых нервов. Отдельный спинномозговой нерв выходит из спинного мозга через межпозвонковые отверстия между парой позвонков или между С1 позвонком и затылочной кости черепа.

Мозговая оболочка

Мозговая оболочка является защитным покрытием центральной нервной системы (ЦНС). Она состоят из трех слоёв: твердой мозговой оболочки, паутинной мозговой оболочки и мягкой мозговой оболочки.

Твердая оболочка.
Это самый толстый, жесткий и самый поверхностный слой оболочки. Изготовлен из плотной нерегулярной соединительной ткани, содержит много жестких коллагеновые волокон и кровеносных сосудов. Твердая мозговая оболочка защищает центральную нервную систему от внешних повреждений, содержит спинномозговую жидкость, которая окружает центральную нервную систему и обеспечивает кровью нервную ткань центральной нервной системы.

Паутинная материя.
Намного тоньше, чем твердая мозговая оболочка. Она выстилает внутри твердую мозговую оболочку и содержит много тонких волокон, которые соединяют её с основной мягкой мозговой оболочкой. Эти волокна пересекают пространство заполненное жидкостью под названием субарахноидальное пространство между паутинной оболочки и мягкой мозговой оболочки.

На правильную работу нервной системы влияют как физические, так и психологические нагрузки, поэтому важно периодически снимать напряжение, возникающее от стрессовых ситуаций. Одним из способов разгрузки является изменение с плохого на хорошее настроение, например, при просмотре развлекательных сайтов.

Пиа материя.
Мягкая мозговая оболочка, представляет собой тонкий и очень тонкий слой ткани, которая лежит на внешней стороне головного и спинного мозга. Содержит много кровеносных сосудов, которые питают нервную ткань ЦНС. Мягкая мозговая оболочка проникает в долины борозд и фиссур мозга, поскольку она охватывает всю поверхность центральной нервной системы.
Спинномозговая жидкость
Пространство, окружающее органы центральной нервной системы заполнено прозрачной жидкостью, известной как цереброспинальная жидкость (ЦСЖ). Она образуется из плазмы крови с помощью специальных структур, называемых сосудистое сплетение. Хориоидное сплетение содержат много капилляров выстланых эпителиальной тканью, которая фильтрует плазму крови и позволяет фильтрованной жидкости войти в пространство вокруг мозга.

Вновь созданный ЦСЖ течет через внутреннюю часть головного мозга в полых пространствах, называемых желудочками и через небольшую полость в середине спинного мозга называемую центральным каналом. Она, также протекает через субарахноидальное пространство вокруг внешней стороны головного мозга и спинного мозга. ЦСЖ постоянно вырабатывается в сосудистом сплетении и реабсорбируется в кровь в структурах, называемых паутинными ворсинками.

Спинномозговая жидкость обеспечивает несколько жизненно важных функций центральной нервной системы:
Она поглощает удары между мозгом и черепом, а также между спинным мозгом и позвонками. Это поглощение воздействий защищает центральную нервную систему от ударов или резких изменений скорости, например, во время автомобильной аварии.

СМЖ уменьшает массу головного и спинного мозга за счёт плавучести. Мозг является очень большим, но мягким органом, который требует большого объема крови, чтобы эффективно функционировать. Уменьшенный вес в спинномозговой жидкости позволяет кровеносным сосудам мозга оставаться открытым и помогает защитить нервную ткань от участи быть раздавленной под действием собственного веса.

Она также помогает поддерживать химический гомеостаз в центральной нервной системе. Так как содержит ионы, питательные вещества, кислород и альбумины, которые поддерживают химическое и осмотическое равновесие нервной ткани. СМЖ также удаляет отходы, которые формируются в качестве побочных продуктов клеточного метаболизма внутри нервной ткани.

Органы чувств

Все органы чувств являются компонентами нервной системы. Известны особые органы чувств, вкуса, запаха, слуха и равновесия, обнаружены специализированные органы, такие как глаза, вкусовые рецепторы и обонятельный эпителий. Чувствительные рецепторы общих органов чувств, как прикосновение, температура и боли встречаются на протяжении большей части тела. Все чувствительные рецепторы тела соединены с афферентными нейронами, которые несут свою сенсорную информацию в ЦНС, подлежащую обработке и интегрированию.

Функции нервной системы

Она имеет три главные функции: сенсорную, соединительную (проводящую) и двигательную.

Сенсорная.
Сенсорная функция нервной системы включает в себя сбор информации от сенсорных рецепторов, которые контролируют внутренние и внешние условия организма. Затем эти сигналы передаются в центральную нервную систему (ЦНС) для дальнейшей обработки афферентными нейронами (и нервовами).

Интеграция.
Интеграцией является обработка множества сенсорных сигналов, которые передаются в центральную нервную систему в любой момент времени. Эти сигналы обрабатываются, сравниваются, используются для принятия решений, отбрасываются или сохраняются в памяти, как это будет сочтено целесообразным. Интеграция происходит в сером веществе головного и спинного мозга и осуществляется интернейронами. Многие интернейроны работают вместе, чтобы сформировать сложные сети, которые обеспечивают эту вычислительную мощность.

Моторная функция. После того, как сети интернейронов в ЦНС оценивают сенсорную информацию и принимают решение о действии, они стимулируют эфферентные нейроны. Эфферентные нейроны (также называемые двигательные нейроны) несут сигналы от серого вещества ЦНС через нервы периферической нервной системы к эффекторным клеткам. Эффектор может быть гладкой сердечной или скелетной мышечной тканью или железистой тканью. Эффектор затем выделяет гормон или перемещает часть тела, чтобы отреагировать на стимул.

Отделы нервной системы

ЦНС — центральная
Спинной мозг и головной вместе образуют центральную нервную систему или ЦНС. ЦНС действует как центр управления тела, предоставляя свои системы обработки данных, памяти и регулирования. Центральная нервная система принимает участие во всех сознательных и подсознательных сборах сенсорной информации от сенсорных рецепторов организма, чтобы остаться в курсе внутренних и внешних условий организма. С помощью этой сенсорной информации, она принимает решения о том, какие сознательные и подсознательные действия принять для поддержания гомеостаза организма и обеспечить его выживание. ЦНС также отвечает за высшие функции нервной системы, такие как язык, творчество, выражение, эмоции и личность. Мозг является местом сознания и определяет, кто мы как люди.

Периферическая нервная система
Она же (ПНС), включает в себя все части нервной системы за пределами головного и спинного мозга. Эти части включают в себя все черепные и спинномозговые нервы, ганглии и сенсорные рецепторы.

Соматическая нервная система
СНС является подразделением ПНС, которое включает в себя все свободные эфферентные нейроны. СНС является единственной сознательно контролируемой частью ПНС и отвечает за стимулирование скелетных мышц в организме.

Вегетативная нервная система
ВНС является подразделением ПНС, которое включает в себя все непроизвольные эфферентные нейроны. Она контролирует подсознательные эффекторы, такие как висцеральной мышечной ткани, сердечной мышечной ткани и железистой ткани.

Есть 2 отдела вегетативной нервной системы в организме: симпатический и парасимпатический отделы.

Симпатический.
Симпатический отдел формирует ответ организма «борьбы или бегства» на стресс, опасность, волнение, физические упражнения, эмоции и смущения. Симпатический отдел увеличивает дыхание и частоту сердечных сокращений, высвобождает адреналин и другие гормоны стресса и уменьшает пищеварение, чтобы справиться с этими ситуациями.

Парасимпатический.
Парасимпатический отдел формирует ответ для отдыха, когда тело расслаблено или отдыхает. Парасимпатический отдел работает над тем, чтобы отменить работу симпатического отдела после стрессовой ситуации. Среди других функций парасимпатического отдела — уменьшение дыхания и частоты сердечных сокращений, повышения пищеварения и разрешение ликвидации отходов.
Энтеральная нервная система
ЭНС является подразделением ВНС, которое отвечает за регулирование пищеварения и функций органов пищеварения.
ЭНС принимает сигналы от центральной нервной системы через симпатический и парасимпатический отделы ВНС — системы, чтобы помочь регулировать свои функции. Тем не менее, в основном ЭНС работает независимо от центральной нервной системы и продолжает функционировать без какого — либо внешнего воздействия. По этой причине ЭНС часто называют «второй мозг.» ЭНС является огромной системой, почти так же существует много нейронов в ЭНС, как и в спинном мозге.

Потенциалы действия

Нейроны функционируют через генерацию и распространение электрохимических сигналов, известных как потенциалы действия (АР). Точка доступа создается за счет движения ионов натрия и калия через мембрану нейронов.

Потенциал покоя.
В состоянии покоя нейроны поддерживают концентрацию ионов натрия вне зависимости от концентрации ионов калия внутри клетки. Эта концентрация поддерживается натриево-калиевым насосом клеточной мембраны, который нагнетает 3 иона натрия из клетки на каждые 2 иона калия, поступающим в камеру. Результаты концентрации ионов в остаточном электрическом потенциале — 70 мВ (мВ), это означает, что внутри клетки имеется отрицательный заряд по сравнению с окружающей средой.

Пороговый потенциал.
Если сигнал позволяет накоплению достаточного количества положительных ионов, чтобы войти в область клетки и заставить его достигнуть — 55 мВ, то область ячейки позволит ионам натрия диффундировать в клетку. — 55 МВ пороговый потенциал для нейронов, так как это является «спусковым крючком» напряжения, которое они должны достичь, чтобы пересечь порог в формировании потенциала действия.

Деполяризация.
Натрий несет положительный заряд, который заставляет клетку деполяризовываьтся по сравнению с её нормальным отрицательным зарядом. Напряжение для деполяризации всех нейронов +30 мВ. Деполяризация клетки является точкой доступа, которая передается по нейрону в качестве сигнала нерва. Положительные ионы распространяются в соседние регионы клетки, инициируя новую точку доступа в тех регионах, в которых они достигают -55 мВ. Импульс продолжает распространяться вниз по клеточной мембране нейрона, пока он не достигнет конца аксона.

Реполяризация.
После того, как напряжение деполяризации +30 мВ достигается, потенциалозависимыме ионны калиевых каналов становятся открытыми, что позволяет положительным ионам калия диффундируовать из клетки. Потеря калия наряду с накачкой ионов натрия обратно из камеры через натриево-калиевый насос восстанавливает клетку потенциала покоя -55 мВ. В этот момент нейрон готов начать новый потенциал действия.

Синапс

Синапс является узлом между нейроном и другой ячейкой. Синапсы, могут образовываться между 2 нейронами или между нейроном и эффекторной клеткой. Есть два типа синапсов, найденных в организме: химические синапсы и электрические синапсы.

Химические синапсы.
В конце нейрона находится область, известная как аксон. Аксон отделяется от следующей ячейки небольшим зазором, известным как синаптическая щель. Когда сигнал достигает аксона, он открывает потенциалзависимые каналы ионов кальция. Ионы кальция вызывают везикулы, содержащие химические вещества, известные как нейротрансмиттеры, чтобы освободить их содержимое путем экзоцитоза в синаптическую щель. Молекулы НТ пересекают синаптическую щель и связываются с молекулами рецептора на клетке, образуя синапсы с нейроном. Эти молекулы рецепторов, открывают ионные каналы, которые могут либо стимулировать клеточный рецептор, чтобы сформировать новый потенциал действия или могут ингибировать клетки от формирования потенциала действия при стимуляции другим нейроном.

Электрические синапсы.
Электрические синапсы образуются, когда 2 нейрона соединены небольшими отверстиями, называемыми щелевыми соединениями. Зазор в соединении позволяет электрическому току перейти от одного нейрона к другому, так что сигнал с одной камеры передается непосредственно на другую клетку через синапс.
Миелинизация
Аксоны многих нейронов покрыты покрытием, известным как миелин, чтобы увеличить скорость проводимости нерва по всему телу. Миелин образуется 2 — х типов у глиальных клеток: шванновских клеток в ПНС и олигодендроцитов в центральной нервной системе. В обоих случаях, глиальные клетки завернуты в их плазматическую мембрану вокруг аксона много раз, чтобы сформировать толстое покрытие липидов. Развитие этих миелиновых оболочек известно как миелинизация.

Миелинизация ускоряет движение импульсов в аксонах. Процесс миелинизации начинается ускорением нервной проводимости на стадии развития плода и продолжается в раннем взрослом возрасте. Миелинизированные аксоны становятся белыми из-за присутствия липидов. Они образуют белое вещество головного мозга, внутреннего и наружного спинного мозга. Белое вещество специализировано для переноса информации быстро через головной и спинной мозг. Серое вещество головного и спинного мозга являются немиелинизированными центрами интеграции, где обрабатывается информация.

Рефлексы

Рефлексы — быстрые, непроизвольные реакции в ответ на воздействие раздражителей. Наиболее известный рефлекс — рефлекс надколенника, который проверяется, когда врач стучит по колену пациента во время физического обследования. Рефлексы интегрированы в сером веществе спинного мозга или в стволе головного мозга. Рефлексы позволяют организму очень быстро реагировать на раздражителей, отправляя ответы эффекторам до того, как нервные сигналы достигают сознательной части мозга. Это объясняет, почему люди часто тянут свои руки подальше от горячего объекта, прежде чем они понимают, что они находятся в опасности.

Функции черепных нервов
Каждый из 12 черепных нервов имеет определенную функцию в пределах нервной системы.
Обонятельный нерв (I) переносит информацию о запахе в мозг из обонятельного эпителия в крыше носовой полости.
Зрительный нерв (II) осуществляет передачу визуальной информации от глаз к мозгу.
Глазодвигательные, блоковые и отводящие нервы (III, IV и VI) все работают вместе, чтобы позволить мозгу контролировать движение и фокусировку глаз. Тройничный нерв (V) несет ощущения от лица и иннервирует мышцы жевания.
Лицевой нерв (VII) иннервирует мышцы лица, чтобы сделать выражение лица и несет вкусовую информацию от передней 2/3 части языка.
Преддверно-улитковый нерв (VIII) проводит слуховую информацию от ушей в мозг.

Языкоглоточный нерв (IX) несет вкусовую информацию от задней 1/3 языка и помогает при глотании.

Блуждающий нерв (X), который называют блуждающим нервом из-за того, что он иннервирует много различных областей, «странствует» через голову, шею и туловище. Он несет в себе информацию о состоянии жизненно важных органов в головном мозге, обеспечивает двигательные сигналы речевого управления и обеспечивает парасимпатические сигналы многих органов.

Добавочный нерв (XI) управляет движениями плеч и шеи.

Подъязычный нерв (XII) перемещает язык для речи и глотания.

Сенсорная физиология

Все сенсорные рецепторы могут быть классифицированы по своей структуре и по типу раздражения, что они обнаруживают. Структурно, есть 3 класса сенсорных рецепторов: свободные, инкапсулированные нервные окончания, а также специализированные клетки.
Свободные нервные окончания являются просто свободными дендритами на конце нейрона, которые проходят в ткань. Боль, жара и холод — все это чувствуется через свободные нервные окончания. Инкапсулированные является свободными нервными окончаниями, завернутыми в круглые капсулы соединительной ткани. Когда капсула деформируется на ощупь или давление, то нейрон возбуждается, чтобы посылать сигналы в ЦНС. Специализированные клетки обнаруживают раздражения из 5 специальных органов чувств: зрения, слуха, равновесия, запаха и вкуса. Каждый из особых чувств имеет свои собственные уникальные сенсорные клетки, такие как палочки и колбочки в сетчатке для обнаружения света в органах зрения.

Функционально, существует 6 основных классов рецепторов: механорецепторы, ноцицепторы, фоторецепторы, хеморецепторы, осморецепторы и терморецепторы.

Механорецепторы.
Механорецепторы чувствительны к механическим раздражителям, как прикосновение, давление, вибрация, и кровяное давление.

Ноцицепторы.
Ноцицепторы реагируют на стимулы, такие как сильный жар, хол или повреждения тканей, посылая болевые сигналы в ЦНС.

Фоторецепторы.
Фоторецепторы сетчатки призваны обнаружить свет, чтобы обеспечить чувство видения.

Хеморецепторы.
Хеморецепторы — рецепторы обнаружения химических веществ в крови, они обеспечивают чувства вкуса и запаха.

Осморецепторы.
Осморецепторы способны контролировать осмолярность крови для определения уровня гидратации организма.

Терморецепторы.
Терморецепторы — рецепторы обнаружения температуры внутри тела и в его окрестностях.

НЕРВНАЯ СИСТЕМА
сложная сеть структур, пронизывающая весь организм и обеспечивающая саморегуляцию его жизнедеятельности благодаря способность реагировать на внешние и внутренние воздействия (стимулы). Основные функции нервной системы - получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем. У человека, как и у всех млекопитающих, нервная система включает три основных компонента: 1) нервные клетки (нейроны); 2) связанные с ними клетки глии, в частности клетки нейроглии, а также клетки, образующие неврилемму; 3) соединительная ткань. Нейроны обеспечивают проведение нервных импульсов; нейроглия выполняет опорные, защитные и трофические функции как в головном, так и в спинном мозгу, а неврилемма, состоящая преимущественно из специализированных, т.н. шванновских клеток, участвует в образовании оболочек волокон периферических нервов; соединительная ткань поддерживает и связывает воедино различные части нервной системы. Нервную систему человека подразделяют по-разному. Анатомически она состоит из центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС включает головной и спинной мозг, а ПНС, обеспечивающая связь ЦНС с различными частями тела, - черепно-мозговые и спинномозговые нервы, а также нервные узлы (ганглии) и нервные сплетения, лежащие вне спинного и головного мозга.

Нейрон. Структурно-функциональной единицей нервной системы является нервная клетка - нейрон. По оценкам, в нервной системе человека более 100 млрд. нейронов. Типичный нейрон состоит из тела (т.е. ядерной части) и отростков, одного обычно неветвящегося отростка, аксона, и нескольких ветвящихся - дендритов. По аксону импульсы идут от тела клетки к мышцам, железам или другим нейронам, тогда как по дендритам они поступают в тело клетки. В нейроне, как и в других клетках, есть ядро и ряд мельчайших структур - органелл (см. также КЛЕТКА). К ним относятся эндоплазматический ретикулум, рибосомы, тельца Ниссля (тигроид), митохондрии, комплекс Гольджи, лизосомы, филаменты (нейрофиламенты и микротрубочки).



Нервный импульс. Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом. В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее "бегущий" нервный импульс в процессе распространения постоянно восстанавливается (регенерирует). Концентрации ионов (электрически заряженных атомов) - главным образом натрия и калия, а также органических веществ - вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. "потенциал покоя" равен примерно -70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией. Плазматическая мембрана, окружающая нейрон, - сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться. При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом - возникает т.н. "потенциал действия", т.е. нервный импульс. Затем натриевые каналы закрываются. Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки - т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции. Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке. Нервы, нервные волокна и ганглии. Нерв - это пучок волокон, каждое из которых функционирует независимо от других. Волокна в нерве организованы в группы, окруженные специализированной соединительной тканью, в которой проходят сосуды, снабжающие нервные волокна питательными веществами и кислородом и удаляющие диоксид углерода и продукты распада. Нервные волокна, по которым импульсы распространяются от периферических рецепторов к ЦНС (афферентные), называют чувствительными или сенсорными. Волокна, передающие импульсы от ЦНС к мышцам или железам (эфферентные), называют двигательными или моторными. Большинство нервов смешанные и состоят как из чувствительных, так и из двигательных волокон. Ганглий (нервный узел) - это скопление тел нейронов в периферической нервной системе. Волокна аксонов в ПНС окружены неврилеммой - оболочкой из шванновских клеток, которые располагаются вдоль аксона, как бусины на нити. Значительное число этих аксонов покрыто дополнительной оболочкой из миелина (белково-липидного комплекса); их называют миелинизированными (мякотными). Волокна же, окруженные клетками неврилеммы, но не покрытые миелиновой оболочкой, называют немиелинизированными (безмякотными). Миелинизированные волокна имеются только у позвоночных животных. Миелиновая оболочка формируется из плазматической мембраны шванновских клеток, которая накручивается на аксон, как моток ленты, образуя слой за слоем. Участок аксона, где две смежные шванновские клетки соприкасаются друг с другом, называется перехватом Ранвье. В ЦНС миелиновая оболочка нервных волокон образована особым типом глиальных клеток - олигодендроглией. Каждая из этих клеток формирует миелиновую оболочку сразу нескольких аксонов. Немиелинизированные волокна в ЦНС лишены оболочки из каких-либо специальных клеток. Миелиновая оболочка ускоряет проведение нервных импульсов, которые "перескакивают" от одного перехвата Ранвье к другому, используя эту оболочку как связующий электрический кабель. Скорость проведения импульсов возрастает с утолщением миелиновой оболочки и колеблется от 2 м/с (по немиелинизированным волокнам) до 120 м/с (по волокнам, особенно богатым миелином). Для сравнения: скорость распространения электрического тока по металлическим проводам - от 300 до 3000 км/с.
Cинапс. Каждый нейрон имеет специализированную связь с мышцами, железами или другими нейронами. Зона функционального контакта двух нейронов называется синапсом. Межнейронные синапсы образуются между различными частями двух нервных клеток: между аксоном и дендритом, между аксоном и телом клетки, между дендритом и дендритом, между аксоном и аксоном. Нейрон, посылающий импульс к синапсу, называют пресинаптическим; нейрон, получающий импульс, - постсинаптическим. Синаптическое пространство имеет форму щели. Нервный импульс, распространяющийся по мембране пресинаптического нейрона, достигает синапса и стимулирует высвобождение особого вещества - нейромедиатора - в узкую синаптическую щель. Молекулы нейромедиатора диффундируют через щель и связываются с рецепторами на мембране постсинаптического нейрона. Если нейромедиатор стимулирует постсинаптический нейрон, его действие называют возбуждающим, если подавляет - тормозным. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, - основной фактор, определяющий, будет ли этот постсинаптический нейрон генерировать нервный импульс в данный момент. У ряда животных (например, у лангуста) между нейронами определенных нервов устанавливается особо тесная связь с формированием либо необычно узкого синапса, т.н. щелевого соединения, либо, если нейроны непосредственно контактируют друг с другом, плотного соединения. Нервные импульсы проходят через эти соединения не при участии нейромедиатора, а непосредственно, путем электрической передачи. Немногочисленные плотные соединения нейронов имеются и у млекопитающих, в том числе у человека.
Регенерация. К моменту рождения человека все его нейроны и большая часть межнейронных связей уже сформированы, и в дальнейшем образуются лишь единичные новые нейроны. Когда нейрон погибает, он не заменяется новым. Однако оставшиеся могут брать на себя функции утраченной клетки, образуя новые отростки, которые формируют синапсы с теми нейронами, мышцами или железами, с которыми был связан утраченный нейрон. Перерезанные или поврежденные волокна нейронов ПНС, окруженные неврилеммой, могут регенерировать, если тело клетки осталось сохранным. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона. Аксоны в ЦНС, не окруженные неврилеммой, по-видимому, не способны вновь прорастать к месту прежнего окончания. Однако многие нейроны ЦНС могут давать новые короткие отростки - ответвления аксонов и дендритов, формирующие новые синапсы.
ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА


ЦНС состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50-100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы. ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии. Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам. Результат деятельности нервной системы - та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения. Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов. Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина - правой. Из этого общего правила, однако, есть несколько исключений. Головной мозг состоит из трех основных структур: больших полушарий, мозжечка и ствола. Большие полушария - самая крупная часть мозга - содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга. Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений. Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар - от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.
См. также ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА .
Спинной мозг. Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества - задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества - передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.
ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА
ПНС обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма. Анатомически ПНС представлена черепно-мозговыми (черепными) и спинномозговыми нервами, а также относительно автономной энтеральной нервной системой, локализованной в стенке кишечника. Все черепно-мозговые нервы (12 пар) разделяют на двигательные, чувствительные либо смешанные. Двигательные нервы начинаются в двигательных ядрах ствола, образованных телами самих моторных нейронов, а чувствительные нервы формируются из волокон тех нейронов, тела которых лежат в ганглиях за пределами мозга. От спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковая. Их обозначают в соответствии с положением позвонков, прилежащих к межпозвоночным отверстиям, из которых выходят данные нервы. Каждый спинномозговой нерв имеет передний и задний корешки, которые, сливаясь, образуют сам нерв. Задний корешок содержит чувствительные волокна; он тесно связан со спинальным ганглием (ганглием заднего корешка), состоящим из тел нейронов, аксоны которых образуют эти волокна. Передний корешок состоит из двигательных волокон, образованных нейронами, клеточные тела которых лежат в спинном мозге.
ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА
Вегетативная, или автономная, нервная система регулирует деятельность непроизвольных мышц, сердечной мышцы и различных желез. Ее структуры расположены как в центральной нервной системе, так и в периферической. Деятельность вегетативной нервной системы направлена на поддержание гомеостаза, т.е. относительно стабильного состояния внутренней среды организма, например постоянной температуры тела или кровяного давления, соответствующего потребностям организма. Сигналы от ЦНС поступают к рабочим (эффекторным) органам через пары последовательно соединенных нейронов. Тела нейронов первого уровня располагаются в ЦНС, а их аксоны оканчиваются в вегетативных ганглиях, лежащих за пределами ЦНС, и здесь образуют синапсы с телами нейронов второго уровня, аксоны которых непосредственно контактируют с эффекторными органами. Первые нейроны называют преганглионарными, вторые - постганглионарными. В той части вегетативной нервной системы, которую называют симпатической, тела преганглионарных нейронов расположены в сером веществе грудного (торакального) и поясничного (люмбального) отделов спинного мозга. Поэтому симпатическую систему называют также торако-люмбальной. Аксоны ее преганглионарных нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных цепочкой вдоль позвоночника. Аксоны постганглионарных нейронов контактируют с эффекторными органами. Окончания постганглионарных волокон выделяют в качестве нейромедиатора норадреналин (вещество, близкое к адреналину), и потому симпатическая система определяется также как адренергическая. Симпатическую систему дополняет парасимпатическая нервная система. Тела ее преганглинарных нейронов расположены в стволе мозга (интракраниально, т.е. внутри черепа) и крестцовом (сакральном) отделе спинного мозга. Поэтому парасимпатическую систему называют также кранио-сакральной. Аксоны преганглионарных парасимпатических нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных вблизи рабочих органов. Окончания постганглионарных парасимпатических волокон выделяют нейромедиатор ацетилхолин, на основании чего парасимпатическую систему называют также холинергической. Как правило, симпатическая система стимулирует те процессы, которые направлены на мобилизацию сил организма в экстремальных ситуациях или в условиях стресса. Парасимпатическая же система способствует накоплению или восстановлению энергетических ресурсов организма. Реакции симпатической системы сопровождаются расходом энергетических ресурсов, повышением частоты и силы сердечных сокращений, возрастания кровяного давления и содержания сахара в крови, а также усилением притока крови к скелетным мышцам за счет уменьшения ее притока к внутренним органам и коже. Все эти изменения характерны для реакции "испуга, бегства или борьбы". Парасимпатическая система, наоборот, уменьшает частоту и силу сердечных сокращений, снижает кровяное давление, стимулирует пищеварительную систему. Симпатическая и парасимпатическая системы действуют координированно, и их нельзя рассматривать как антагонистические. Они сообща поддерживают функционирование внутренних органов и тканей на уровне, соответствующем интенсивности стресса и эмоциональному состоянию человека. Обе системы функционируют непрерывно, но уровни их активности колеблются в зависимости от ситуации.
РЕФЛЕКСЫ
Когда на рецептор сенсорного нейрона воздействует адекватный стимул, в нем возникает залп импульсов, запускающих ответное действие, именуемое рефлекторным актом (рефлексом). Рефлексы лежат в основе большинства проявлений жизнедеятельности нашего организма. Рефлекторный акт осуществляет т.н. рефлекторная дуга; этим термином обозначают путь передачи нервных импульсов от точки исходной стимуляции на теле до органа, совершающего ответное действие. Дуга рефлекса, вызывающего сокращение скелетной мышцы, состоит по меньшей мере из двух нейронов: чувствительного, тело которого расположено в ганглии, а аксон образует синапс с нейронами спинного мозга или ствола мозга, и двигательного (нижнего, или периферического, мотонейрона), тело которого находится в сером веществе, а аксон оканчивается двигательной концевой пластинкой на скелетных мышечных волокнах. В рефлекторную дугу между чувствительным и двигательным нейронами может включаться и третий, промежуточный, нейрон, расположенный в сером веществе. Дуги многих рефлексов содержат два и более промежуточных нейрона. Рефлекторные действия осуществляются непроизвольно, многие из них не осознаются. Коленный рефлекс, например, вызывается постукиванием по сухожилию четырехглавой мышцы в области колена. Это двухнейронный рефлекс, его рефлекторная дуга состоит из мышечных веретен (мышечных рецепторов), чувствительного нейрона, периферического двигательного нейрона и мышцы. Другой пример - рефлекторное отдергивание руки от горячего предмета: дуга этого рефлекса включает чувствительный нейрон, один или несколько промежуточных нейронов в сером веществе спинного мозга, периферический двигательный нейрон и мышцу. Многие рефлекторные акты имеют значительно более сложный механизм. Так называемые межсегментарные рефлексы складываются из комбинаций более простых рефлексов, в осуществлении которых принимают участие многие сегменты спинного мозга. Благодаря таким рефлексам обеспечивается, например, координация движений рук и ног при ходьбе. К сложным рефлексам, замыкающимся в головном мозге, относятся движения, связанные с поддержанием равновесия. Висцеральные рефлексы, т.е. рефлекторные реакции внутренних органов, опосредуются вегетативной нервной системой; они обеспечивают опорожнение мочевого пузыря и многие процессы в пищеварительной системе.
См. также РЕФЛЕКС .
ЗАБОЛЕВАНИЯ НЕРВНОЙ СИСТЕМЫ
Поражения нервной системы возникают при органических заболеваниях или травмах головного и спинного мозга, мозговых оболочек, периферических нервов. Диагностика и лечение заболеваний и травм нервной системы составляют предмет особой отрасли медицины - неврологии. Психиатрия и клиническая психология занимаются главным образом психическими расстройствами. Сферы этих медицинских дисциплин часто перекрываются. См. отдельные заболевания нервной системы: АЛЬЦГЕЙМЕРА БОЛЕЗНЬ ;
ИНСУЛЬТ ;
МЕНИНГИТ ;
НЕВРИТ ;
ПАРАЛИЧ ;
ПАРКИНСОНА БОЛЕЗНЬ ;
ПОЛИОМИЕЛИТ ;
РАССЕЯННЫЙ СКЛЕРОЗ ;
СТОЛБНЯК ;
ДЕТСКИЙ ЦЕРЕБРАЛЬНЫЙ ПАРАЛИЧ ;
ХОРЕЯ ;
ЭНЦЕФАЛИТ ;
ЭПИЛЕПСИЯ .
См. также
АНАТОМИЯ СРАВНИТЕЛЬНАЯ ;
АНАТОМИЯ ЧЕЛОВЕКА .
ЛИТЕРАТУРА
Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение. М., 1988 Физиология человека, под ред. Р.Шмидта, Г.Тевса, т. 1. М., 1996

Энциклопедия Кольера. - Открытое общество . 2000 .

Одним из основных свойств живого вещества является раздражимость. Каждый живой организм получает раздражения из окружающего мира и отвечает на них соответствующими реакциями, которые связывают организм с внешней средой. Протекающий в самом организме обмен веществ, в свою очередь, обусловливает ряд раздражений, на которые организм также реагирует. Связь между участком, на который падает раздражение, и регулирующим органом в высшем многоклеточном организме осуществляется нервной системой. Проникая своими разветвлениями во все органы и ткани, нервная система связывает части организма в единое целое, осуществляя его объединение (интеграцию).

Следовательно, нервная система выполняет в организме человека следующие функции:

1. Посредством органов чувств осуществляет связь организма с окружающей средой, обеспечивая взаимодействие с ней;

2. Управляет деятельностью различных органов и их систем, составляющих целостный организм;

3. Координирует процессы, протекающие в организме, с учетом состояния внутренней и внешней среды, анатомически и функционально связывая все части организма в единое целое;

4. Осуществляет высшую нервную деятельность.

Функционирование нервной системы связано с восприятием и обработкой разнообразной сенсорной информации, а также информационным обменом между различными частями организма и внешней средой. Передача информации между нервными клетками осуществляется в форме нервных импульсов. Нервные импульсы возникают в сенсорных (чувствительных) нейронах как результат активации их воспринимающих структур, называемых рецепторами.

Сами рецепторы активируются различными изменениями во внутренней среде организма и в окружающей его внешней среде. Сенсорные нейроны передают возникшие в рецепторах импульсы в спинной и головной мозг. Здесь происходит активация других нейронов и передача нервных импульсов в конечном итоге на двигательные нейроны, локализованные в определенных отделах спинного и головного мозга. Двигательные нейроны вступают в контакт с различными эффекторными (исполнительными) образованиями, такими как мышцы, железы, кровеносные сосуды, которые под влиянием поступающих нервных импульсов изменяют свою работу, повышая или снижая ее уровень.

Классификация нервной системы .

Нервная система классифицируется по топографическому и функциональному признакам.

По функциональному признаку нервная система делится на соматическую или анимальную и вегетативную или автономную.

Соматическая нервная система (от слова сома - тело) иннервирует кожные покровы тела, а также весь двигательный аппарат, в том числе кости, суставы и мышцы, а также поперечнополосатую мускулатуру некоторых внутренностей. Она заведует преимущественно функциями связи организма с внешней средой, обусловливая чувствительность организма (при посредстве органов чувств) и движения мускулатуры скелета.


Вегетативная нервная система иннервирует внутренние органы, кровеносные сосуды и железы, контролируя и регулируя тем самым обменные процессы в организме. А также скелетную мускулатуру, обеспечивая ее трофику (питание) и тонус. Однако следует всегда помнить, что регуляция жизнедеятельности организма протекает при гармоничном сочетании работы всех отделов нервной системы.

Вегетативная нервная система делится на два отдела: симпатический и парасимпатический. Симпатическая нервная система иннервирует все тело, а парасимпатическая - лишь определенные его области.

По топографическому признаку в нервной системе различают центральную и периферическую нервную систему.

Центральная нервная система представлена головным и спинным мозгом, которые состоят из серого и белого вещества. Все остальное, т.е. нервные корешки, узлы, сплетения, нервы и периферические нервные окончания, образует периферическую нервную систему.

Как в центральной, так и в периферической нервной системе содержатся элементы соматической и вегетативной частей, чем и достигается единство всей нервной системы. Высшим отделом нервной системы, который ведает всеми процессами организма, является кора полушарий большого мозга.

Строение нервной ткани .

Нервная ткань состоит из нервных клеток - нейронов , выполняющих специфическую функцию, и нейроглии - клеток, которые, окружая нейроны, выполняют опорную, защитную и трофическую функции. Специфическая функция нейронов состоит в восприятии раздражений, генерации нервных импульсов и проведении их к другим клеткам.

Нейроны являются основными структурными и функциональными единицами нервной системы. Каждый нейрон способен воспринимать раздражение и возбуждаться, а также передавать возбуждение в форме нервного импульса соседним нейронам или иннервируемым органам и мышцам. Каждый нейрон проводит нервный импульс только в одном направлении. В силу этого отростки нейрона подразделяются на дендриты, которые проводят возбуждение к телу нейрона, и аксон или нейрит, проводящий возбуждение от тела клетки. Каждый нейрон является элементарной составной частью той или иной рефлекторной дуги, по которой осуществляется проведение импульсов в нервной системе от рецепторов, воспринимающих различные воздействия, до эффекторных органов, участвующих в ответной реакции на эти воздействия.

Нейроны имеют тело и отростки (рис. 53), с помощью которых они соединяются между собой и с иннервируемыми структурами (мышечными волокнами, кровеносными сосудами и т. п.), обеспечивая проведение нервного импульса по телу человека. Длина отростков очень различна; в отдельных случаях она может достигать от 1 до 1,5 м.

По числу отростков принято выделять униполярные нейроны, имеющие один отросток, биполярные нейроны - клетки с двумя отростками и мультиполярные нейроны, имеющие множество отростков. У человека наиболее распространены мультиполярные нейроны. Из многих отростков один представлен нейритом, а все остальные являются дендритами. Истинных униполярных нейронов у человека нет. Имеются так называемые псевдоуниполярные (ложноуниполярные) нейроны, которые образуются из биполярных нервных клеток путем слияния их отростков в один. Псевдоуниполярными являются чувствительные нервные клетки, расположенные в спинномозговых узлах и чувствительных узлах черепных нервов.

Отростки нервной клетки неравнозначны в функциональном отношении, так как одни из них проводят раздражение к телу нейрона - это дендриты, и только один отросток - нейрит (аксон) - проводит раздражение от тела нервной клетки и передает его либо на другие нейроны, либо на эффекторные структуры (например, на мышечные волокна). Благодаря разветвлению аксона возбуждение от одного нейрона одновременно передается многим нервным клеткам.

Рис. 53. Строение нейрона.

Цитоплазма нервных клеток содержит все характерные для клетки органеллы общего значения и органеллы специального значения (нейрофибриллы), хроматофильное вещество, тигроидное вещество (глыбки Ниссля), которые принимают самое непосредственное участие в возбуждении нервной клетки.

В зависимости от выполняемой функции нейроны делятся на чувствительные или афферентные, двигательные или эфферентные и ассоциативные или вставочные.

Чувствительные (афферентные) нейроны воспринимают раздражение под влиянием различных воздействий внешней или внутренней среды организма и передают его на другие нейроны. Эти нейроны всегда располагаются за пределами центральной нервной системы, как правило, в узлах спинномозговых и черепных нервов. Их дендриты образуют в органах чувствительные нервные окончания.

Двигательные (эфферентные) нейроны передают возбуждение на ткани рабочих органов. Ассоциативные (вставочные) нейроны всегда расположены в пределах центральной нервной системы, они осуществляют связь между афферентными и эфферентными нейронами.

Нервные волокна - это отростки нервных клеток, одетые глиальными оболочками. Они бывают двух видов - безмиелиновые или безмякотные и миелиновые или мякотные.

Нервные окончания . Все нервные волока заканчиваются концевыми разветвлениями, которые называются нервными окончаниями. По функциональному значению их делят на три группы: эффекторы, чувствительные окончания или рецепторы и синаптические или концевые аппараты, образующие межнейрональные синапсы, которые осуществляют связь нейронов между собой.

Рецепторы представляют собой концевые разветвления дендритов чувствительных клеток. Они воспринимают раздражения как из внешней, так и из внутренней среды организма. Поэтому в зависимости от места восприятия раздражения различают: экстерорецепторы, воспринимающие раздражения из внешней среды (от кожи, сетчатки глаза, кортиева органа, слизистой оболочки носа и ротовой полости), интерорецепторы, воспринимающие раздражения из внутренних органов и сосудов, и проприорецепторы, воспринимающие раздражения от рецепторов мышц, сухожилий и связок.

Эффекторы бывают двух видов - двигательные и секреторные. Они являются окончаниями двигательных нейронов, при их участии нервный импульс передается на ткани рабочих органов (мышце, железе и т.д.).

Синапс - это контактное соединение одного нейрона с другим. В его формировании принимает участие аксон одного нейрона, образующий окончания на дендритах или теле другого нейрона. Посредством синапса нервный импульс передается от одного нейрона к другому. Передача осуществляется при помощи медиаторов (ацетилхолина, норадреналина , серотонина). Благодаря синаптическим окончаниям нейроны сочленяются в рефлекторные дуги.

Рефлекторная дуга .

В основе деятельности нервной системы лежит рефлекс, который является ответной реакцией организма на изменение внешней или внутренней среды организма при обязательном участии нервной системы. Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма (сокращение или расслабление мышц, секреция или прекращение ее железами, сужение или расширение сосудов и т.д.). Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспосабливаться к этим изменениям. Различают безусловные (пищевые, оборонительные, половые и т.п.) и условные рефлексы.

Анатомической основой рефлекса является рефлекторная дуга, которая представляет собой цепь последовательно связанных между собой нейронов, которая и составляет материальный субстрат рефлекса. Рефлекторные дуги бывают простые и сложные. Простая рефлекторная дуга состоит из афферентного или чувствительного нейрона, воспринимающего раздражения, эфферентного или двигательного нейрона, передающего нервное возбуждение к рабочему органу, и нервного центра (рис. 54).

У человека в основном рефлекторные дуги сложные. В них между чувствительными и двигательными нервными клетками в пределах центральной нервной системы располагаются вставочные (ассоциативные) нейроны, проходящие через разные уровни головного мозга, включая его кору (рис. 54). Афферентные, эфферентные и ассоциативные нервные клетки, управляющие определенными видами рефлекторных реакций, имеют строгую локализацию в нервной системе.

Рис. 54. Схема соединения нейронов в двухчленной (слева) и трехчленной (справа) рефлекторной дуге.

В настоящее время за основу рефлекторной деятельности принимается рефлекторное кольцо . Классическая рефлекторная дуга дополнена четвертым звеном - обратной афферентацией от эффекторов. В частности, от мышц в нервную систему постоянно поступает сенсорная информация об их состоянии в результате действия тех или иных раздражителей.

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

К центральной нервной системе относятся спинной и головной мозг, состоящие из серого и белого вещества.

Серое вещество спинного и головного мозга - это скопления нервных клеток вместе с ближайшими разветвлениями их отростков, называемые центрами (ядрами).

Белое вещество - это нервные волокна (отростки нервных клеток - нейриты), покрытые миелиновой оболочкой и связывающие отдельные центры между собой, т.е. проводящие пути.

СПИННОЙ МОЗГ

Спинной мозг - филогенетически наиболее древняя часть центральной нервной системы. Он расположен в позвоночном канале и у взрослого человека продолжается от большого затылочного отверстия черепа, где непосредственно переходит в продолговатый мозг, до верхнего края второго поясничного позвонка, переходя в концевую нить, которая прикрепляется ко 2-му копчиковому позвонку. Спинной мозг имеет два утолщения - шейное и поясничное, соответствующие корешкам спинномозговых нервов верхних и нижних конечностей.

На всем протяжении от спинного мозга отходит 31 пара спинномозговых нервов, связывающих его с соответствующими сегментами тела. Эти спинномозговые нервы составляют основу периферической нервной системы в области туловища. Спинной мозг выполняет ряд важных функций: во-первых, он принимает участие в восприятии чувствительной информации из различных частей тела; во-вторых, он регулирует сегментарную рефлекторную деятельность; в-третьих, через спинной мозг проходят различные проводящие пути к головному мозгу и от головного мозга.

Вдоль всей передней поверхности спинного мозга расположена передняя срединная щель, а вдоль задней - задняя срединная борозда. Борозды разделяют его на правую и левую половины. На боковых поверхностях спинного мозга видны передняя и задняя латеральные борозды, соответствующие местам прохождения передних и задних корешков спинномозговых нервов. Латеральные борозды делят каждую половину мозга на три продольных канатика - задний, боковой и передний (рис. 55).

Сегментарное строение спинного мозга.

Спинной мозг имеет признаки сегментарного строения. Под сегментом спинного мозга понимают участок его серого вещества, соответствующий положению пары (правого и левого) спинномозговых нервов, иннервирующих соответствующие сегменты тела. Различают 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый сегменты спинного мозга.

Рис. 55. Нейронный состав сегмента спинного мозга.

Вследствие того, что спинной мозг короче позвоночного канала, место выхода нервных корешков не соответствует уровню межпозвоночных отверстий. Поэтому последние поясничные, все крестцовые и копчиковые корешки отходят не только в стороны, но и вниз, образуя густой пучок, который называется конский хвост .

Связь между сегментом спинного мозга и соответствующим ему сегментом тела осуществляется посредством пары спинномозговых нервов. Эта особенность строения спинного мозга находит отражение в закономерностях иннервации общего кожного покрова и мышц тела.

Из каждого сегмента спинного мозга с обеих сторон через передние латеральные борозды выходят отростки двигательных нейронов, расположенных в передних рогах серого вещества. Совокупность этих отростков образует передние (двигательные) корешки спинномозгового нерва, по которым идут нервные импульсы от спинного мозга к скелетной мускулатуре (рис. 55). В их составе также проходят нервные (вегетативные) волокна к узлам симпатического ствола.

В каждый сегмент спинного мозга с обеих сторон через задние латеральные борозды входят задние (чувствительные) корешки спинномозгового нерва, которые представляют собой комплекс центральных отростков чувствительных нейронов соответствующих спинномозговых узлов. Эти узлы в количестве 31 пары обычно расположены в области межпозвоночных отверстий. Каждый их них представляет собой овальное утолщение по ходу заднего корешка и состоит из чувствительных псевдоуниполярных нейронов.

Совокупность нейронов спинномозгового узла образует ганглионарный (узловой) нервный центр (рис. 56), где происходит первичная обработка сенсорной (чувствительной) информации. Каждый нейрон спинномозгового узла имеет короткий отросток, сразу делящийся на два: периферический, который начинается рецепторами в коже, мышцах, суставах или внутренних органах, и центральный, направляющийся в составе заднего корешка в спинной мозг.

Таким образом, передние и задние корешки совершенно различны по своим функциям. Если задние корешки содержат только афферентные (чувствительные, сенсорные) нервные волокна и проводят в спинной мозг чувствительные импульсы различного характера, то передние корешки представлены только эфферентными (двигательными или моторными), и вегетативными волокнами, передающими нервные импульсы к эффекторам.

Внутреннее строение спинного мозга .

На поперечном срезе спинного мозга видно, что его вещество неоднородно. Внутри расположено серое вещество, а снаружи - белое вещество. Серое вещество представляет собой скопление тел нейронов и их коротких отростков, белое вещество - скопление их длинных отростков, соединяющих нервные клетки различных сегментов спинного мозга между собой и с клетками головного мозга. В центре серого вещества имеется центральный канал, по которому циркулирует спинномозговая жидкость (рис. 55).

Рис. 56. Внутреннее строение спинного мозга (поперечный разрез).

Строение серого вещества .

Серое вещество расположено внутри спинного мозга и окружено со всех сторон белым веществом. Оно образует две вертикальные колонны, расположенные в правой и левой половинах спинного мозга. В середине расположен узкий центральный канал , проходящий по всей длине спинного мозга и содержащий спинномозговую жидкость. Вверху он сообщается с 4-м желудочком головного мозга. Серое вещество, окружающее центральный канал, называется промежуточным .

В каждой колонне серого вещества имеется два столба - передний и задний . На поперечных разрезах спинного мозга эти столбы имеют вид рогов : переднего расширенного и заднего заостренного. Поэтому общий вид серого вещества на фоне белого напоминает букву «Н» (рис. 56).

Передний и задний рога в каждой половине спинного мозга связаны между собой промежуточной зоной серого вещества, которая особенно выражена на протяжении от 1-го грудного до 2-3-го поясничных сегментов и выступает в виде бокового рога (рис. 55). Поэтому в этих сегментах серое вещество на поперечном разрезе имеет вид бабочки. В боковых рогах заложены клетки, иннервирующие вегетативные органы и группирующиеся в ядра (промежуточно-латеральное). Нейриты клеток этого ядра выходят из спинного мозга в составе передних корешков.

Локальные скопления нервных клеток в сером веществе называют ядрами. В ядрах осуществляется обработка поступающей в спинной мозг информации и передача ее на другие нервные центры. Клетки задних рогов содержат грудное ядро и собственные ядра спинного мозга, которые воспринимают из тела нервные импульсы, обеспечивающие различные виды чувствительности. Передние рога содержат двигательные нейроны, которые, выходя из спинного мозга, составляют передние двигательные корешки. Эти клетки образуют ядра эфферентных соматических нервов, иннервирующих скелетную мускулатуру - соматические двигательные ядра. Они расположены в виде двух групп - медиальной и латеральной.

Таким образом, основная функция сегментарного аппарата спинного мозга, в состав которого входит участок серого вещества вместе с соответствующей парой спинномозговых нервов и относящихся к ним передних и задних корешков, сводится к осуществлению врожденных сегментарных рефлексов.

Строение белого вещества .

Снаружи от серого вещества, в котором сосредоточены тела нервных клеток, расположено белое вещество. Оно представлено длинными отростками нейронов - аксонами, покрытыми миелиновой оболочкой, придающей им белый цвет. Эти нервные волокна осуществляют связи между соседними сегментами спинного мозга, а также восходящие и нисходящие связи спинного и головного мозга.

Передние и задние борозды и щель, расположенные на поверхности спинного мозга, разделяют его белое вещество на симметрично лежащие части - канатики спинного мозга (рис. 55). Различают задние, боковые и передние канатики. Самую внутреннюю их часть, непосредственно прилежащую к серому веществу, составляют нервные волокна собственных пучков спинного мозга, которые осуществляют связи между соседними сегментами спинного мозга. Основная масса волокон канатиков представлена отростками тел нервных клеток, которые образуют двустороннюю связь сегментарного аппарата спинного мозга с головным мозгом. Эта связь осуществляется посредством восходящих и нисходящих проводящих путей, которые составляют белое вещество спинного мозга. По восходящим проводящим путям информация поступает из спинного мозга к головному, а по нисходящим, напротив, из головного мозга к соответствующим двигательным ядрам спинного мозга.

Белое вещество спинного мозга состоит из нервных отростков, которые составляют три системы нервных волокон:

1) короткие пучки ассоциативных волокон, соединяющие участки спинного мозга на различных уровнях (афферентные и вставочные нейроны);

2) длинные афферентные (чувствительные, центростреми-тельные);

3) длинные эфферентные (двигательные, центробежные).

Короткие волокна относятся к собственному аппарату спинного мозга, а длинные составляют проводниковый аппарат двухсторонних связей с головным мозгом.

Проводящие пути, связывающие спинной мозг с головным .

Благодаря проводниковому аппарату собственный аппарат спинного мозга связан с аппаратом головного мозга, который объединяет работу всей нервной системы. Эта связь осуществляется посредством восходящих и нисходящих проводящих путей, которые составляют белое вещество спинного мозга, разделенное латеральными бороздами на задний, боковой и передний канатики. Восходящие (афферентные, центростремительные) проводящие пути несут информацию от спинного мозга к головному, а нисходящие (эфферентные, центробежные), наоборот, - от головного мозга к соответствующим ядрам спинного мозга.

Рис. 57. Локализация основных восходящих проводящих путей в белом веществе спинного мозга.

Задние канатики содержат волокна задних корешков спинномозговых нервов, образующих тонкий пучок , лежащий медиально, и клиновидный пучок , расположенный латерально (рис. 57). Эти пучки проводят от соответствующих частей тела к коре головного мозга осознаваемую человеком сенсорную информацию от органов осязания, мышц, суставов, связок и т. д.

Боковые канатики содержат восходящие и нисходящие нервные пути (рис. 57, 58). Восходящие пути идут к мозжечку (проводят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и обеспечивают бессознательную координацию движений), к среднему и промежуточному мозгу (проводят температурные и болевые раздражения, обеспечивают тактильную чувствительность). Нисходящие пути идут от коры головного мозга (пирамидный путь, являющийся сознательным эфферентным двигательным путем), от среднего мозга (бессознательный эфферентный двигательный путь).

Рис. 58. Переключение нисходящих проводящих путей на мотонейронах спинного мозга.

Передние канатики (рис. 58)содержат нисходящие пути от коры головного мозга (пирамидный путь), от среднего мозга (осуществляют рефлекторные защитные движения при зрительных и слуховых раздражениях), от ядер вестибулярного нерва и ретикулярной формации.

Оболочки спинного мозга .

Спинной мозг покрыт тремя соединительнотканными оболочками: твердой, паутинной и мягкой или сосудистой. Эти оболочки продолжаются в такие же оболочки головного мозга.

Твердая оболочка покрывает в виде мешка спинной мозг снаружи. Она прилежит вплотную к стенкам позвоночного канала, выстланного надкостницей. Между надкостницей и твердой оболочкой находится эпидуральное пространство. В нем расположены жировая клетчатка и венозные сплетения позвоночника.

Паутинная оболочка в виде тонкого прозрачного бессосудистого листка прилегает изнутри к твердой мозговой оболочке. Между указанными двумя оболочками располагается щелевидное субдуральное пространство .

Мягкая оболочка непосредственно прилежит к спинному мозгу. Она состоит из двух листков, между которыми находятся сосуды. Между паутинной и мягкой оболочками находится подпаутинное (субарахноидальное) пространство , содержащее спинномозговую жидкость.

ГОЛОВНОЙ МОЗГ

Головной мозг расположен в полости черепа. Он имеет верхнелатеральную или дорсальную выпуклую поверхность и нижнюю вентральную поверхность (основание мозга) уплощенную и неровную. В нем различают три крупные части: большой мозг, мозжечок и мозговой ствол.

Рис. 59. Основание мозга.

Головной мозг имеет следующие отделы: продолговатый мозг, задний, средний, промежуточный и конечный мозг. Все указанные отделы, кроме мозжечка и конечного мозга, составляют мозговой ствол. Масса головного мозга у взрослого человека составляет 1200-1350 г. Умственные способности человека не зависят от массы мозга.

На дорсальной поверхности расположены полушария большого мозга, отделенные друг от друга продольной щелью мозга. Сзади имеется поперечная щель, залегающая между полушариями и мозжечком.

Основание мозга повторяет рельеф внутреннего основания черепа. Продолжением спинного мозга является продолговатый мозг, по бокам от него расположены полушария мозжечка, а впереди мост и ножки мозжечка к мосту (рис. 59).

Впереди и кверху от моста, расходясь в стороны, лежат две ножки мозга - части среднего мозга. Между ножками расположена ямка, в которой расположены образования промежуточного мозга, относящиеся к гипоталамусу. По бокам от указанных образований расположены полушария большого мозга. На основании мозга, на протяжении ствола расположены корешки черепных нервов (рис. 59).

Продолговатый мозг является продолжением спинного мозга. Границей между ними служит место выхода корешков первой пары спинномозговых нервов.

Рис. 60. Продолговатый мозг (вид спереди).

1 - оливомозжечковый тракт, 2 - ядро оливы, 3 - ворота ядра оливы, 4 - олива, 5 - пирамидный тракт, 6 - подъязычный нерв, 7 - пирамида, 8 - передняя боковая борозда, 9 - добавочный нерв.

На передней (нижней) поверхности продолговатого мозга проходит передняя срединная щель , которая является продолжением одноименной борозды спинного мозга. По бокам от нее расположены два продольных тяжа - пирамиды (рис. 60). Они состоят из белого вещества и образованы волокнами пирамидных проводящих путей. Эти пути идут от двигательного центра коры полушарий большого мозга к двигательным ядрам спинного мозга. Часть пирамидных волокон в глубине передней срединной щели переходит на противоположную сторону, образуя перекрест пирамид. Далее волокна из пирамид продолжаются в передние и боковые канатики спинного мозга.

Снаружи от пирамид справа и слева находятся возвышения - оливы, внутри каждой из которых заметно скопление серого вещества - оливное ядро. Оно функционально связано с регуляцией равновесия и работой вестибулярного аппарата. Между пирамидой и оливой расположена передняя латеральная борозда - место выхода корешков подъязычного нерва (XII пара), направляющегося к мышцам языка.

По задней поверхности продолговатого мозга проходит задняя срединная борозда, являющаяся продолжением одноименной борозды спинного мозга. По бокам от нее идут задние латеральные борозды. Между задней срединной и латеральной бороздами с каждой стороны продолговатого мозга расположены по два утолщения - тонкий и клиновидный бугорки, внутри которых находятся одноименные ядра. На нервных клетках этих ядер заканчиваются волокна тонкого и клиновидного пучков, продолжающихся из спинного в продолговатый мозг. По этим пучкам проходят чувствительные (проприоцептивные) импульсы от мышц и суставов туловища и конечностей (кроме головы).

Участки продолговатого мозга, ограниченные латеральными бороздами, - это боковые канатики, которые также являются продолжением боковых канатиков спинного мозга. Волокна из боковых канатиков без резкой границы переходят в нижние ножки мозжечка. Они имеют вид расходящихся кверху валиков, ограничивающих нижний угол ромбовидной ямки.

Из толщи боковых канатиков выходят корешки языкоглоточного (IX пара), блуждающего (X пара) и добавочного (XI пара) нервов, осуществляющих иннервацию кожи, мышц и органов головы и шеи.

Сетчатая (ретикулярная) формация продолговатого мозга состоит из переплетения нервных волокон и лежащих между ними нервных клеток, образующих ядра ретикулярной формации. Они отвечают за рефлекторные функции, например, рефлекс равновесия, глотательный, сосательный, дыхательные и сердечно-сосудистые рефлексы, а также за защитные рефлексы (кашель, чиханье и др.).

Белое вещество продолговатого мозга образуют длинные системы волокон, проходящие здесь из спинного мозга или направляющиеся в спинной мозг, и короткие, связывающие ядра стволовой части головного мозга.

Продолговатый мозг выполняет проводниковую и рефлекторную функции. В нем расположены жизненно важные центры - дыхательный и сосудодвигательный, регулирующие деятельность органов дыхания, сердца и кровеносных сосудов. Поэтому при повреждении продолговатого мозга может наступить смерть.

Задний мозг состоит из двух частей - моста и мозжечка.

Мост (рис. 59) расположен со стороны основания мозга, сзади он граничит с продолговатым мозгом, а спереди - с ножками мозга. Мост имеет вид валика. Значительную его часть составляют поперечно и продольно расположенные нервные волокна.

Продольные волокна образуют двигательные и чувствительные проводящие пути, соединяющие вышележащие отделы головного мозга со спинным.

Поперечные волокна идут из моста к коре мозжечка в составе средних ножек мозжечка. Такая система проводящих путей связывает через мост кору полушарий большого мозга с корой полушарий мозжечка. По мостомозжечковым проводящим путям от коры полушарий большого мозга через мост осуществляется контролирующее влияние на мозжечок. Между волокнами находятся многочисленные скопления серого вещества, составляющие ядра моста - собственные ядра моста и ядра V-VIII пар черепных нервов . Эти нервы выходят из основания мозга и иннервируют органы, мышцы и кожу головы. От ядер преддверно-улиткового нерва (VIII пара) начинаются слуховые проводящие пути, идущие в другие отделы головного мозга.

Мозжечок (рис. 59) располагается в задней черепной ямке под затылочными долями больших полушарий дорсально от моста и продолговатого мозга. Под мозжечком находится IV желудочек мозга.

В мозжечке различают филогенетически более старую среднюю часть - червь, играющий важную роль в регуляции автоматических движений туловища и конечностей, например в процессе ходьбы, и более новую - полушария мозжечка, принимающие участие преимущественно в управлении координированными автоматизированными движениями конечностей.

Поверхность мозжечка покрыта слоем серого вещества - корой мозжечка , имеет узкие извилины, разделенные бороздами. В нем выделяют два полушария и среднюю часть - червь .

Рис. 61. Ядра мозжечка.

Внутри мозжечок состоит из белого вещества и находящихся в нем парных ядер серого вещества (рис. 61), самыми крупными из которых являются зубчатые ядра. Белое вещество состоит из волокон, связывающих между собой участки коры мозжечка, ядра ствола мозга с корой мозжечка, а также кору с ядрами мозжечка. На сагиттальном разрезе через червь мозжечок имеет характерный рисунок, известный под названием «древа жизни».

Связи мозжечка со стволом мозга и спинным мозгом осуществляются с помощью трех пар ножек, состоящих из белого вещества. Посредством верхних ножек мозжечок соединяется со средним мозгом, средних - с мостом и нижних - с продолговатым и спинным мозгом.

Основное функциональное значение мозжечка состоит в поддержании равновесия тела, рефлекторной регуляции и координации движений тела, придании им плавности, точности и соразмерности в ответ на проприоцептивные импульсы, поступающие в него от мышц, сухожилий, суставов и связок, в регуляции мышечного тонуса. Мозжечок программирует плавное, точное и автоматическое выполнение движений благодаря его связям со спинным мозгом и стволовыми центрами управления движениями, а также с корой больших полушарий.

Ромбовидная ямка расположена в стволовой части мозга, имеет вид ромба. Верхние стороны ромба ограничены двумя верхними мозжечковыми ножками, а нижние стороны - двумя нижними ножками. Она является дном четвертого желудочка. В ямке расположены ядра V-XII пар черепных нервов. Ромбовидная ямка имеет важное значение в регуляции возбудимости и тонуса всех отделов центральной нервной системы, оказывает влияние на центры вегетативной нервной системы. В ромбовидной ямке расположены важные центры - дыхательный, сердечной деятельности, сосудорегуляторный и др. Ромбовидная ямка имеет жизненно важное значение, так как в этой области заложено большинство ядер черепных нервов (V-XII пары).

Четвертый желудочек расположен между мозжечком, мостом и продолговатым мозгом. Он заполнен спинномозговой жидкостью. Внизу желудочек сообщается с центральным каналом спинного мозга, вверху переходит в мозговой водопровод среднего мозга. Дном четвертого желудочка является ромбовидная ямка, а крышей - передний и задний мозговые паруса. Место схождения верхнего и нижнего парусов вдается в мозжечок и образует шатер.

Средний мозг (рис. 62) находится между мостом и промежуточным мозгом. Его переднюю часть составляют ножки мозга, где преимущественно проходят проводящие пути, а заднюю - крыша, в которой располагаются подкорковые центры зрения и слуха.

Крыша среднего мозга состоит из двух пар небольших возвышений - холмиков. Верхние два холмика являются подкорковыми центрами зрения, оба нижних холмика - подкорковыми центрами слуха. Каждый холмик переходит в ручку, которая направляется к латеральному и медиальному коленчатым телам . Коленчатые тела относятся к промежуточному мозгу. Между верхними холмиками лежит шишковидное тело - железа внутренней секреции.

Ножки мозга представляют собой два толстых белых тяжа, идущих от моста кверху и кнаружи и затем погружающихся в вещество большого мозга. Они состоят из основания ножек и покрышки , а между ними находится черное вещество , которое по своей функции относится к экстрапирамидной системе.

Рис. 62. Поперечный разрез среднего мозга.

Основание ножек мозга содержит волокна, спускающиеся от коры полушарий большого мозга ко всем нижележащим отделам нервной системы. Покрышка содержит все восходящие чувствительные пути, за исключением зрительного и обонятельного.

Среди ядер серого вещества самое значительное - красное ядро, являющееся важным подкорковым двигательным центром экстрапирамидной системы. От этого ядра начинается нисходящий красноядерно-спинномозговой путь, соединяющий красное ядро с передними рогами спинного мозга. К этому пути подходят волокна от верхних ножек мозжечка. Благодаря этим связям мозжечок и экстрапирамидная система влияют на всю скелетную мускулатуру, регулируя бессознательные, автоматические движения.

Полостью среднего мозга является водопровод (сильвиев водопровод), сообщающий между собой полости третьего и четвертого желудочков. Под водопроводом мозга расположены ядра глазодвигательного и блокового нервов (III и IV пары), иннервирующие мышцы глаза.

Таким образом, в среднем мозге человека имеются:

Подкорковые центры зрения и ядра нервов, иннервирующих мышцы глаза;

Подкорковые слуховые центры;

Все восходящие и нисходящие проводящие пути, связывающие кору головного мозга со спинным мозгом;

Пучки белого вещества, связывающие средний мозг с другими отделами ЦНС.

Средний мозг иннервирует мышцы глаза, осуществляет ориентировочные зрительные и слуховые рефлексы (например, поворот головы по направлению к свету и звуку), играет важную роль в регуляции тонуса скелетной мускулатуры, регулирует бессознательные, автоматические движения.

Ретикулярная формация представляет собой филогенетически более старую и относительно просто организованную нервную сеть с множеством ядерных центров. Ей отводится важная роль в поддержании бодрствующего состояния мозга, а также в механизмах формирования сложно-координированных двигательных актов (таких, как чихание, рвота и т. п.), обеспечивающих защиту организма от воздействий внешней среды, угрожающих его жизнедеятельности. Она работает в функциональном единстве с анализаторными системами и оказывает тонические влияния на ниже- и вышележащие отделы центральной нервной системы.

Промежуточный мозг (рис. 63, 64) располагается между конечным и средним мозгом. На сагиттальном срезе промежуточный мозг виден под мозолистым телом и сводом. В нем различают две части. Филогенетически более молодой таламический мозг, являющийся высшим подкорковым чувствительным (сенсорным) центром, в котором переключаются практически все афферентные пути, несущие сенсорную информацию от органов тела и органов чувств. И гипоталамус, более старое в филогенетическом отношении образование, играющее роль высшего центра регуляции вегетативных функций организма.

Таламический мозг в свою очередь подразделяется на парные образования - талaмусы (зрительные бугры), метаталамус (заталамическая область) и эпиталамус (надталамическая область).

Полостью промежуточного мозга является III желудочек , который посредством правого и левого межжелудочковых отверстий сообщается с боковыми желудочками, расположенными внутри больших полушарий, и посредством водопровода мозга - с полостью IV желудочка мозга. В верхней стенке III желудочка располагается сосудистое сплетение, участвующее наряду со сплетениями в других желудочках мозга в образовании спинномозговой жидкости.

Таламус или зрительный бугор (рис. 64) представляет собой парное скопление серого вещества, расположенного по бокам III желудочка. Он имеет яйцевидную форму и состоит из клеточных скоплений (ядер) и прослоек белого вещества. Передний конец таламуса заострен в виде переднего бугорка, а задний расширен и утолщен в виде подушки. Деление на передний конец и подушку соответствует делению таламуса на центры афферентных путей (передний конец) и на зрительный центр (задний). За подушкой таламуса расположены коленчатые тела, относящиеся к метаталамусу.

Рис. 63. Промежуточный мозг.

1 - мозолистое тело, 2 - свод, 3 - таламус, 4 - третий желудочек, 5 - гипоталамус, 6 - средний мозг, 7 - серый бугор, 8 - глазодвигательный нерв, 9 - воронка, 10, 11 - гипофиз, 12 - перекрест зрительный нервов, 13 - передняя (белая) спайка.

В состав таламуса входят клеточные скопления (ядра), отграниченные друг от друга прослойками белого вещества. К каждому ядру подходят собственные афферентные и эфферентные пути. Соседние ядра формируют группы.

Таламусы являются своеобразным коллектором чувствительных путей, местом, в котором концентрируются все пути, проводящие чувствительные импульсы, идущие от противоположной половины тела. Таламические ядра, получающие импульсы от строго определенных участков тела, передают эти импульсы в соответствующие ограниченные зоны коры и частично в подкорковые ядра. Таламусы находятся на пути восходящих трактов, идущих от спинного мозга и ствола мозга к коре больших полушарий. Они имеют многочисленные связи с подкорковыми узлами, проходящими главным образом через чечевичное ядро.

Рис. 64. Дорсальная поверхность промежуточного мозга и части ствола мозга.

Таким образом, к таламусам по афферентным путям сходится информация практически от всех рецепторных зон. Эта информация подвергается существенной переработке. Отсюда к коре больших полушарий направляется лишь часть ее, другая же и, вероятно, большая часть принимает участие в формировании безусловных и, возможно, некоторых условных рефлексов, дуги которых замыкаются на уровне таламусов. Таламусы являются важнейшим звеном афферентной части рефлекторных дуг, обусловливающих инстинктивные и автоматизированные двигательные акты, в частности привычные локомоторные движения (ходьба, бег, плавание, езда на велосипеде, катание на коньках и т.п.).

В подушке таламуса расположены подкорковые центры зрения, которые проводящими путями связаны с затылочной долей полушария, где находится корковый зрительный центр.

Эпиталамус включает эпифиз (шишковидное тело) и ряд ядерных скоплений нейронов. Эпифиз - это железа внутренней секреции, функция которой заключается в тормозящем влиянии на работу большей части других эндокринных желез (гипофиза, щитовидной и паращитовидных желез, половых желез, надпочечников и др.). Эпифиз вырабатывает нейрогормон мелатонин, имеющий большое значение для поддержания иммунного статуса организма. Гормоны эпифиза также играют определенную роль в регуляции сезонных ритмов жизнедеятельности организма.

Метаталамус располагается в заднебоковом отделе промежуточного мозга, где под подушкой таламуса лежат два парных овальных образования - более крупное медиальное и меньшее по размеру латеральное коленчатые тела (рис. 64). С помощью ручек верхнего и нижнего холмиков, состоящих из белого вещества, медиальные и латеральные коленчатые тела соединяются соответственно с нижними и верхними холмиками крыши среднего мозга. Сверху коленчатые тела покрыты белым веществом, внутри содержатся скопления серого вещества - ядра.

Ядра медиального коленчатого тела (как и ядра нижнего холмика четверохолмия), являются подкорковым центром слуха, поскольку в них оканчиваются афферентные волокна, берущие начало в области моста (слуховой путь) от ядер преддверно-улиткового (VIII пара) нерва. Ядра латерального коленчатого тела (вместе с ядрами верхнего холмика четверохолмия) являются подкорковыми центрами зрения: в них оканчивается латеральная часть волокон, идущих в составе зрительного тракта (IIпара). Ядра коленчатых тел формируют также восходящие пути к центрам зрительного и слухового анализаторов в коре больших полушарий.

Гипоталамус (рис. 63) располагается под таламусом. В нем залегают скопления серого вещества, относящиеся к высшим вегетативным центрам. В гипоталамусе выделяют на два отдела: передний (серый бугор с воронкой и гипофизом, перекрест зрительных нервов и зрительный тракт) и задний (сосцевидные тела и задняя гипоталамическая область).

Ядра гипоталамической области связаны с гипофизом сосудами (с передней долей гипофиза) и гипоталамо-гипофизарным путем (с задней его долей). Благодаря этим связям гипоталамус и гипофиз образуют гипоталамо-гипофизарную нейросекреторную систему.

Серый бугор представляет собой непарный выступ нижней стенки третьего желудочка. Верхушка бугра вытянута в узкую полую воронку, на конце которой находится гипофиз, лежащий в углублении турецкого седла. В сером бугре залегают ядра серого вещества, являющиеся высшими вегетативными центрами, влияющими на обмен веществ и терморегуляцию.

Рис. 65. Вентральная поверхность промежуточного мозга.

Зрительный перекрест лежит впереди серого бугра, он образован перекрестом зрительных нервов. Сосцевидные тела относятся к подкорковым обонятельным центрам.

В задней гипоталамической области расположены три скопления нервных клеток, образующих около 30 ядер гипоталамуса, клетки которых вырабатывают нейросекрет. Нейросекрет поступает по отросткам нервных клеток в гипофиз и регулирует выделение им гормонов, участвующих в регуляции функций внутренних органов.

КОНЕЧНЫЙ МОЗГ

Конечный или большой мозг представляет собой самую развитую и в филогенетическом отношении новую часть головного мозга, непосредственно связанную с наиболее сложными проявлениями психической и интеллектуальной деятельности человека. Он является высшим отделом центральной нервной системы, который не только управляет всей жизнедеятельностью организма, но и обеспечивает осуществление разумной деятельности человека. В конечном мозге расположены центры инстинктивного поведения, основанного на видовых реакциях (безусловные рефлексы) - подкорковые ядра и центры индивидуального поведения, основанного на индивидуальном опыте (условные рефлексы) - кора большого мозга.

Конечный мозг состоит из двух полушарий большого мозга, соединенных между собой мозолистым телом, передней и задней спайками и спайкой свода. Полости конечного мозга образуют правый и левый боковые желудочки, каждый из которых находится в соответствующем полушарии; медиальную стенку бокового желудочка в ростральном отделе образует прозрачная перегородка.

Полушария большого мозга сверху покрыты корой мозга - слоем серого вещества, образованного нейронами более пятидесяти разновидностей. Под корой мозга в больших полушариях находится белое вещество, состоящее из миелинизированных волокон, большая часть которых соединяет кору больших полушарий с другими отделами и центрами головного мозга. В толще белого вещества полушарий находятся скопления серого вещества - базальные ядра (подкорковые ядерные центры). Слой белого вещества, называемый внутренней капсулой, отграничивает полушария от таламусов промежуточного мозга.

Полушария головного мозга и их рельеф.

Правое и левое полушария мозга отделены друг от друга продольной щелью. В каждом полушарии различают три поверхности - латеральную (боковую), медиальную (внутреннюю) и нижнюю.

Поверхность полушария (плащ) образована равномерным слоем серого вещества толщиной 1,3-4,5 мм, содержащего нервные клетки. Этот слой, называемый корой большого мозга, как бы сложен в складки. Поэтому поверхность плаща состоит из чередующихся между собой борозд и валиков между ними, называемых извилинами.

Глубокие борозды делят каждое полушарие на 5 долей: лобную, теменную, затылочную, височную и островок

Лобная доля составляет передний отдел полушария. Она отделена от расположенной позади нее теменной доли центральной бороздой . Лобная доля имеет четыре лобные извилины : предцентральную, расположеннуюмежду центральной и предцентральной бороздами, верхнюю, среднюю и нижнюю. На медиальной поверхности лобной доли находится медиальная лобная извилина, а на нижней поверхности - обонятельная борозда, в которой лежат обонятельная луковица, обонятельный тракт и обонятельный треугольник, продолжающийся в переднее продырявленное вещество мозга.

Теменная доля расположена между лобной (спереди), затылочной (сзади) и височной (снизу) долями. На ней имеется постцентральная извилина , ограниченная центральной и постцентральной бороздами, внутритеменная борозда , надкраевая и угловая извилины .

Затылочная доля . На латеральной поверхности в затылочной доле полушария расположена поперечная затылочная борозда . Остальные борозды и извилины затылочной области часто непостоянны и варьируют индивидуально. На медиальной поверхности расположен относящийся к затылочной доле клин, ограниченный спереди теменно-затылочной бороздой, сзади - сходящейся с ней под углом шпорной бороздой.

Височная доля . Вобласти височной доли на ее латеральной поверхности различают верхнюю и нижнюю височные борозды, идущие параллельно боковой борозде. Боковой бороздой и височными бороздами ограничиваются верхняя, средняя и нижняя височные извилины . На нижней поверхности височная доля не имеет четких границ с затылочной долей. Рядом с язычной извилиной, относящейся к затылочной области, располагается латеральная затылочно-височная извилина височной доли, которая сверху отграничивается коллатеральной бороздой от лимбической доли, а латерально - проходящей от затылочного полюса к височному затылочно-височной бороздой.

В состав каждого полушария входят плащ или мантия, обонятельный мозг, базальные ядра и боковые желудочки. Полушария соединены между собой мозолистым телом (рис. 63,64), которое состоит из нервных волокон, идущих поперечно из одного полушария в другое и соединяющих симметричные участки мозга справа и слева.

В коре происходит высший анализ всех раздражений, поступивших из внешней и внутренней среды организма, и формируется поведение человека.

Строение мозговой коры . Кора состоит из 10-14 млрд. нервных клеток, весьма разнообразных по форме и величине и расположенных послойно. Различные участки коры головного мозга отличаются друг от друга особенностями клеточного строения, расположением волокон, а также функциональным значением.

По морфологическим особенностям различают 6 основных слоев коры больших полушарий головного мозга (рис. 66):

Рис. 66. Строение коры головного мозга.

I - наружный зональный или молекулярный слой содержит концевые разветвления отростков нервных клеток;

II - наружный зернистый слой содержит мелкие клетки похожие на зерна;

III - пирамидный слой состоит из малых и средних пирамидных клеток;

IV - внутренний зернистый слой, также как и наружный зернистый, состоит из маленьких клеток-зерен;

V - ганглиозный слой содержит большие пирамидные клетки;

VI - слой полиморфных клеток граничит с белым веществом.

Нижние слои (V и VI) являются преимущественно началом эфферентных двигательных путей, по которым кора посылает импульсы на периферию ко всем органам тела. Клетки средних слоев (III и IV) коры связаны преимущественно с входящими в нее нервными афферентными путями. По волокнам этих путей проводятся к клеткам коры нервные импульсы из различных отделов нервной системы, связанной с поверхностью тела, мышцами, суставами, внутренними органами, органами чувств. Верхние слои (I и II) относятся к ассоциативным путям коры.

Базальные ядра полушарий (рис. 67). Кроме серой коры на поверхности полушарий имеются скопления серого вещества и в его толще, называемые базальными ядрами . К ним относятся полосатое тело, состоящее из хвостатого и чечевицеобразного ядер, ограда и миндалевидное тело. Хвостатое и чечевицеобразное ядра являются главной частью экстрапирамидной системы, т.е. подкорковых двигательных центров, осуществляющих бессознательное управление движениями и регуляцию мышечного тонуса, а также высшим регулирующим центром вегетативных функций в отношении теплорегуляции и углеводного обмена.

Миндалевидное тело относится к подкорковым обонятельным центрам и к лимбической системе. Между хвостатым ядром и зрительным бугром, с одной стороны, и чечевицеобразным ядром, с другой стороны, находится внутренняя капсула . Она состоит из проекционных волокон восходящих и нисходящих путей, соединяющих кору головного мозга со стволом мозга и спинным мозгом. Между чечевицеобразным ядром и оградой - наружная капсула .

Лимбическая система представляет собой комплекс образований конечного, промежуточного и среднего мозга, участвующий в регуляции различных вегетативных функций, поддержании постоянства внутренней среды организма (гомеостаза) и формировании эмоционально окрашенных поведенческих реакций.

Обонятельный мозг - самая древняя часть конечного мозга, возникшая в связи с анализатором обоняния. Поэтому все его части являются различными компонентами обонятельного анализатора.

Рис. 67. Базальные ядра (фронтальный срез полушарий головного мозга).

Белое вещество полушарий . Все пространство между серым веществом мозговой коры и базальными ядрами занято белым веществом . Оно состоит из большого количества нервных волокон, идущих в различных направлениях и образующих проводящие пути конечного мозга. Нервные волокна могут быть разделены на три вида: ассоциативные, комиссуральные и проекционные.

Ассоциативные волокна связывают между собой различные участки коры одного и того же полушария. Они делятся на короткие и длинные. Короткие волокна соединяют между собой соседние извилины, длинные - более удаленные друг от друга участки коры. В спинном мозгу ассоциативные нервные пути соединяют рядом расположенные сегменты.

Комиссуральные волокна соединяют симметричные участки обоих полушарий мозга. Большая часть таких волокон находится в мозолистом теле.

Проекционные волокна связывают мозговую кору с нижележащими отделами центральной нервной системы до спинного мозга включительно. По одним из этих волокон (афферентным) возбуждение проводится по направлению к коре (центростремительно), а по другим (эфферентным) наоборот - центробежно от коры.

Боковые желудочки . В полушариях конечного мозга ниже уровня мозолистого тела расположены симметрично по сторонам средней линии два боковых желудочка. Их сосудистая система образует черепно-мозговую (спинномозговую) жидкость, которая заполняет полости желудочков. Боковые желудочки соединяются с третьим желудочком при помощи водопровода мозга.

Локализация функций в коре полушарий большого мозга (центры мозговой коры) . Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов в организме и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для определения локализации поражений в полушариях головного мозга.

В основе деятельности коры мозга, как и других отделов нервной системы, лежит анализ раздражений из внешней и внутренней среды организма и синтез его ответных реакций. Определенные зоны коры выполняют специфические функции по анализу и синтезу поступающей информации, поэтому их называют корковыми центрами или корковыми концами анализаторов (по И.П. Павлову). Анализатор - это сложный нервный механизм, начинающийся наружным воспринимающим аппаратом и заканчивающийся в мозгу.

Анализаторы имеют общий план строения. В каждом из них выделяют три отдела:

1) рецепторный отдел, ответственный за опознание специфических раздражителей и преобразование их воздействия в нервное возбуждение. Различают экстерорецепторы , воспринимающие раздражения из внешней среды, проприорецепторы , воспринимающие раздражения, возникающие в мышцах и суставах, и интерорецепторы , воспринимающие раздражения от внутренних органов и сосудов;

2) проводниковый отдел, обеспечивающий многоэтапную передачу нервного возбуждения по соответствующим нервам и трактам через ряд ядерных (подкорковых) нервных центров. Проводниковый отдел любого анализатора представлен различными ядрами мозжечка, ствола мозга и таламуса и их проекциями к соответствующим областям коры мозга. По мере передачи сенсорной информации от одного нервного центра к другому осуществляется ее последовательный анализ, в результате чего в организме возникает ощущение или чувствование.

3) корковый отдел (корковый конец анализатора), находится в коре мозга. Каждый анализатор имеет свою преимущественную локализацию в коре мозга. Так, корковое ядро двигательного анализ расположено в лобной доле, зрительного - в затылочной доле и т. д. В коре происходит анализ полученных раздражений с учетом субъективного переживания воспринимаемой сенсорной информации, т.е. формируется осознанное ощущение и происходит его восприятие.

Рис. 68. Локализация функционально различных центров в коре больших полушарий.

Кора представляет собой совокупность корковых концов анализаторов. Наиболее важными из них являются следующие (рис. 68):

- корковый конец общей чувствительности расположен в постцентральной извилине и в коре верхней теменной области. В этой области происходит анализ температурной, болевой, тактильной (осязательной) и мышечно-суставной чувствительности. При этом общая чувствительность правой половины тела проецируется в левом полушарии, а левой половины тела - в правом;

- корковый слуховой центр лежит в верхней височной извилине, где осуществляется высший анализ чувствительных импульсов, поступающих из спирального органа внутреннего уха. Его повреждение ведет к глухоте.

- корковый зрительный центр локализуется в затылочной доле в районе шпорной борозды. При повреждении ядра зрительного анализатора наступает слепота.

- корковый двигательный центр расположен в лобной доле вобласти предцентральной извилины. Сюда приходит часть афферентных волокон от таламуса, несущих проприоцептивную информацию от мышц и суставов тела. Здесь также начинаются нисходящие пути к стволу мозга и спинному мозгу, обеспечивающие возможность сознательной регуляции движений (пирамидные пути). Центр правого полушария регулирует работу мышц левой половины и наоборот. Поражение этой области коры приводит к параличу противоположной половины тела.

В различные участки коры благодаря анализаторам проецируются сигналы из внешней и внутренней среды организма. Эти сигналы по И.П. Павлову и составляют первую сигнальную систему действительности, которая проявляется в форме ощущений и восприятий. Первая сигнальная система имеется и у животных. В отличие от последних, у человека имеется и вторая сигнальная система - это человеческое мышление, которое всегда словесно.

Вторая сигнальная система связана с деятельностью всей коры мозга, однако некоторые области ее играют особенную роль в осуществлении речи:

- речедвигательный центр находится в нижней лобной извилине. При его поражении наступает двигательная афазия, т.е. нарушение способности произносить слова;

- центр письменной речи расположен в средней лобной извилине вблизи ядра общего двигательного анализатора;

- центр слухового анализатора устной речи находится в верхней височной извилине;

- центр зрительного восприятия (чтения) - в теменной доле.

Эти центры односторонние. У правшей они расположены в левом полушарии.

ПРОВОДЯЩИЕ ПУТИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Системы нервных волокон, проводящие импульсы от кожи и слизистых оболочек, внутренних органов и органов движения к различным отделам спинного и головного мозга, в частности к коре полушарий большого мозга, называются восходящими, чувствительными или афферентными проводящими путями.

Системы нервных волокон, передающие импульсы от коры или нижележащих ядер головного мозга через спинной мозг к рабочему органу (мышце, железе и др.), называются двигательными, нисходящими или эфферентными проводящими путями.

Проводящие пути образованы цепями вставочных нейронов, причем чувствительные пути обычно состоят из трех нейронов, а двигательные - из двух. Первый нейрон всех чувствительных путей располагается всегда вне спинного или головного мозга, находясь в спинномозговых узлах или чувствительных узлах черепных нервов. Последний нейрон двигательных путей всегда представлен клетками передних рогов серого вещества спинного мозга или клетками двигательных ядер черепных нервов.

Чувствительные пути . Спинной мозг проводит четыре вида чувствительности: тактильную (чувство прикосновения и давления), температурную, болевую и проприоцептивную (от рецепторов мышц и сухожилий, так называемое суставно-мышечное чувство, чувство положения и движения тела и конечностей). Основная масса восходящих путей проводит проприоцептивную чувствительность. Это говорит о важности контроля движений, так называемой обратной связи, для двигательной функции организма.

Болевая и температурная чувствительность проводится по латеральному спиноталамическому пути (рис. 69). Первым нейроном этого пути являются клетки спинномозговых узлов. Периферические отростки их входят в состав спинномозговых нервов. Центральные отростки образуют задние корешки и идут в спинной мозг, оканчиваясь на клетках задних рогов (2-й нейрон). Отростки вторых нейронов переходят на противоположную сторону (образуют перекрест), поднимаются в составе бокового канатика спинного мозга и идут через продолговатый мозг, мост и ножки мозга к латеральному ядру таламуса, где переключаются на 3-й нейрон. Отростки клеток ядер таламуса о

Нервная система контролирует деятельность всех систем и органов и обеспечивает связь организма с внешней средой.

Строение нервной системы

Структурной единицей нервной системы является нейрон – нервная клетка с отростками. В целом, строение нервной системы представляет собой совокупность нейронов, постоянно контактирующих друг с другом при помощи специальных механизмов – синапсов. По функциям и структуре различаются следующие виды нейронов:

  • Чувствительные или рецепторные;
  • Эффекторные – двигательные нейроны, которые направляют импульс к исполнительным органам (эффекторам);
  • Замыкательные или вставочные (кондукторные).

Условно строение нервной системы можно разделить на два больших отдела – соматический (или анимальный) и вегетативный (или автономный). Соматическая система преимущественно отвечает за связь организма с внешней средой, обеспечивая движение, чувствительность и сокращение скелетной мускулатуры. Вегетативная система влияет на процессы роста (дыхание, обмен веществ, выделение и др.). Обе системы имеют очень тесную взаимосвязь, только вегетативная нервная система более самостоятельна и от воли человека не зависит. Именно поэтому ее еще называют автономной. Делится автономная система на симпатическую и парасимпатическую.

Вся нервная система состоит из центральной и периферической. К центральной части относится спинной и головной мозг, а периферическая система представляет собой отходящие нервные волокна от головного и спинного мозга. Если посмотреть на мозг в разрезе, видно, что состоит он из белого и серого вещества.

Серое вещество - это скопление нервных клеток (с начальными отделами отростков, отходящих от их тел). Отдельные группы серого вещества называют еще ядрами.

Белое вещество состоит из нервных волокон, покрытых миелиновой оболочкой (отростки нервных клеток, из которых образуется серое вещество). В спинном и головном мозге нервные волокна образуют проводящие пути.

Периферические нервы делятся на двигательные, чувствительные и смешанные, в зависимости от того, из каких волокон они состоят (двигательных или чувствительных). Тела нейронов, чьи отростки состоят из чувствительных нервов, находятся в нервных узлах вне мозга. Тела двигательных нейронов находятся в двигательных ядрах головного мозга и передних рогах спинного мозга.

Функции нервной системы

Нервная система оказывает различное воздействие на органы. Три главных функции нервной системы – это:

  • Пусковая, вызывающая либо останавливающая функцию органа (секреция железы, сокращение мышцы и т.д.);
  • Сосудодвигательная, позволяющая менять ширину просвета сосудов, регулируя тем самым приток крови к органу;
  • Трофическая, понижающая или повышающая обмен веществ, а, следовательно, потребление кислорода и питательных веществ. Это позволяет постоянно согласовать функциональное состояние органа и его потребность в кислороде и питательных веществах. Когда по двигательным волокнам к работающей скелетной мышце направляются импульсы, вызывающие ее сокращение, то одновременно поступают и импульсы, усиливающие обмен веществ и расширяющие сосуды, что позволяет обеспечить энергетическую возможность выполнения мышечной работы.

Заболевания нервной системы

Вместе с эндокринными железами нервная система играет решающую роль в функционировании организма. Она ответственна за слаженную работу всех систем и органов человеческого организма и объединяет спинной, головной мозг и периферическую систему. Двигательная активность и чувствительность тела поддерживается благодаря нервным окончаниям. А благодаря вегетативной системе инвертируется сердечнососудистая система и другие органы.

Поэтому нарушение функций нервной системы влияет на работу всех систем и органов.

Все заболевания нервной системы можно разделить на инфекционные, наследственные, сосудистые, травматические и хронически прогрессирующие.

Наследственные болезни бывают геномными и хромосомными. Самым известным и распространенным хромосомным заболеванием является болезнь Дауна. Этой болезни характерны следующие признаки: нарушение со стороны опорно-двигательного аппарата, эндокринной системы, нехватка умственных способностей.

Травматические поражения нервной системы возникают вследствие ушибов и травм, либо при сдавливании головного или спинного мозга. Такие заболевания, как правило, сопровождаются рвотой, тошнотой, потерей памяти, расстройствами сознания, потерей чувствительности.

Сосудистые заболевания преимущественно развиваются на фоне атеросклероза или гипертонической болезни. К данной категории можно отнести хроническую сосудисто-мозговую недостаточность, нарушение мозгового кровообращения. Характеризуются следующими симптомами: приступы рвоты и тошноты, головная боль, нарушение двигательной активности, уменьшение чувствительности.

Хронически прогрессирующие болезни, как правило, развиваются вследствие нарушения обменных процессов, воздействия инфекции, интоксикации организма, либо по причине аномалий строения нервной системы. К таким заболеваниям можно отнести склероз, миастению и др. Эти заболевания обычно постепенно прогрессируют, снижая работоспособность некоторых систем и органов.

Причины возникновения заболеваний нервной системы:

Возможен также плацентарный путь передачи болезней нервной системы в период беременности (цитомегаловирус, краснуха), а также по периферической системе (полиомиелит, бешенство, герпес, менингоэнцефалит).

Помимо этого, на нервную систему негативно влияет эндокринные, сердечные, почечные заболевания, неполноценное питание, химические и лекарственные препараты, тяжелые металлы.