Простейшие дроби четырех типов. Интегрирование дробно-рациональной функции

Интегрирование дробно-рациональной функции.
Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видов дробей мы уже рассмотрели на уроке , и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений .

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. В этой связи настоятельно рекомендую посетить урок А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе и методе почленного сложения (вычитания) уравнений системы).

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей .

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1


Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем: – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод : Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной .

Сейчас мы будем рассматривать только правильные дробно-рациональные функции . Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

Вообще говоря, здесь уже произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение:

Дискриминант больше нуля, значит, трехчлен действительно раскладывается на множители:

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители

Начинаем оформлять решение:

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно .

Только есть одна загвоздочка, коэффициенты мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие телодвижения так, не гоготать! будут направлены на то, чтобы как раз их УЗНАТЬ – выяснить, чему же равны .

Будьте внимательны, подробно объясняю один раз!

Итак, начинаем плясать от:

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы):

В левой части раскрываем скобки, неизвестные коэффициенты при этом пока не трогаем:

Заодно повторяем школьное правило умножения многочленов. В свою бытность учителем, я научился выговаривать это правило с каменным лицом: Для того чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена .

С точки зрения понятного объяснения коэффициенты лучше внести в скобки (хотя лично я никогда этого не делаю в целях экономии времени):

Составляем систему линейных уравнений.
Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс . Что было бы, если б в правой части вообще не было ? Скажем, красовалось бы просто без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: . Почему ноль? А потому что в правой части всегда можно приписать этот самый квадрат с нулём: Если в правой части отсутствуют какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули .

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, минералка, подбираем свободные члены.

Эх,…что-то я расшутился. Шутки прочь – математика наука серьезная. У нас в институтской группе никто не смеялся, когда доцент сказала, что разбросает члены по числовой прямой и выберет из них самые большие. Настраиваемся на серьезный лад. Хотя… кто доживет до конца этого урока, все равно будет тихо улыбаться.

Система готова:

Решаем систему:

(1) Из первого уравнения выражаем и подставляем его во 2-е и 3-е уравнения системы. На самом деле можно было выразить (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты .

(2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.

(3) Почленно складываем 2-е и 3-е уравнение, при этом, получая равенство , из которого следует, что

(4) Подставляем во второе (или третье) уравнение, откуда находим, что

(5) Подставляем и в первое уравнение, получая .

Если возникли трудности с методами решения системы отработайте их на уроке Как решить систему линейных уравнений?

После решения системы всегда полезно сделать проверку – подставить найденные значения в каждое уравнение системы, в результате всё должно «сойтись».

Почти приехали. Коэффициенты найдены, при этом:

Чистовое оформление задание должно выглядеть примерно так:




Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «халявная» сложная функция, об особенностях ее интегрирования я рассказал на уроке Метод замены переменной в неопределенном интеграле .

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.
В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия .

Пример 2

Найти неопределенный интеграл.

Вернемся к дроби из первого примера: . Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: ? Здесь в знаменателе у нас степени, или, по-математически кратные множители . Кроме того, есть неразложимый на множители квадратный трехчлен (легко убедиться, что дискриминант уравнения отрицателен, поэтому на множители трехчлен никак не разложить). Что делать? Разложение в сумму элементарных дробей будет выглядеть наподобие с неизвестными коэффициентами вверху или как-то по-другому?

Пример 3

Представить функцию

Шаг 1. Проверяем, правильная ли у нас дробь
Старшая степень числителя: 2
Старшая степень знаменателя: 8
, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.
В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель:
При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ). Примеры №1,2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:
– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей .

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат (предпоследний параграф урока Интегрирование некоторых дробей ).

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

Напомним, что дробно-рациональными называют функции вида $$ f(x) = \frac{P_n(x)}{Q_m(x)}, $$ в общем случае являющиеся отношением двух многочленов %%P_n(x)%% и %%Q_m(x)%%.

Если %%m > n \geq 0%%, то рациональную дробь называют правильной , в противном случае — неправильной. Используя правило деления многочленов , неправильную рациональную дробь можно представить в виде суммы многочлена %%P_{n - m}%% степени %%n - m%% и некоторой правильной дроби, т.е. $$ \frac{P_n(x)}{Q_m(x)} = P_{n-m}(x) + \frac{P_l(x)}{Q_n(x)}, $$ где степень %%l%% многочлена %%P_l(x)%% меньше степени %%n%% многочлена %%Q_n(x)%%.

Таким образом, неопределенный интеграл от рациональной функции можно представить суммой неопределенных интегралов от многочлена и от правильной рациональной дроби.

Интегралы от простейших рациональных дробей

Среди правильных рациональных дробей выделяют четыре типа, которые относят к простейшим рациональным дробям :

  1. %%\displaystyle \frac{A}{x - a}%%,
  2. %%\displaystyle \frac{A}{(x - a)^k}%%,
  3. %%\displaystyle \frac{Ax + B}{x^2 + px + q}%%,
  4. %%\displaystyle \frac{Ax + B}{(x^2 + px + q)^k}%%,

где %%k > 1%% — целое и %%p^2 - 4q < 0%%, т.е. квадратные уравнения не имеют действительных корней.

Вычисление неопределенных интегралов от дробей первых двух типов

Вычисление неопределенных интегралов от дробей первых двух типов не вызывает затруднений: $$ \begin{array}{ll} \int \frac{A}{x - a} \mathrm{d}x &= A\int \frac{\mathrm{d}(x - a)}{x - a} = A \ln |x - a| + C, \\ \\ \int \frac{A}{(x - a)^k} \mathrm{d}x &= A\int \frac{\mathrm{d}(x - a)}{(x - a)^k} = A \frac{(x-a)^{-k + 1}}{-k + 1} + C = \\ &= -\frac{A}{(k-1)(x-a)^{k-1}} + C. \end{array} $$

Вычисление неопределенного интегралов от дробей третьего типа

Дробь третьего типа сначала преобразуем, выделив полный квадрат в знаменателе: $$ \frac{Ax + B}{x^2 + px + q} = \frac{Ax + B}{(x + p/2)^2 + q - p^2/4}, $$ так как %%p^2 - 4q < 0%%, то %%q - p^2/4 > 0%%, которое обозначим как %%a^2%%. Заменив также %%t = x + p/2, \mathrm{d}t = \mathrm{d}x%%, преобразуем знаменатель и запишем интеграл от дроби третьего типа в форме $$ \begin{array}{ll} \int \frac{Ax + B}{x^2 + px + q} \mathrm{d}x &= \int \frac{Ax + B}{(x + p/2)^2 + q - p^2/4} \mathrm{d}x = \\ &= \int \frac{A(t - p/2) + B}{t^2 + a^2} \mathrm{d}t = \int \frac{At + (B - A p/2)}{t^2 + a^2} \mathrm{d}t. \end{array} $$

Последний интеграл, используя линейность неопределенного интеграла, представим в виде суммы двух и в первом из них введем %%t%% под знак дифференциала: $$ \begin{array}{ll} \int \frac{At + (B - A p/2)}{t^2 + a^2} \mathrm{d}t &= A\int \frac{t \mathrm{d}t}{t^2 + a^2} + \left(B - \frac{pA}{2}\right)\int \frac{\mathrm{d}t}{t^2 + a^2} = \\ &= \frac{A}{2} \int \frac{\mathrm{d}\left(t^2 + a^2\right)}{t^2 + a^2} + - \frac{2B - pA}{2}\int \frac{\mathrm{d}t}{t^2 + a^2} = \\ &= \frac{A}{2} \ln \left| t^2 + a^2\right| + \frac{2B - pA}{2a} \text{arctg}\frac{t}{a} + C. \end{array} $$

Возвращаясь к исходной переменной %%x%%, в итоге для дроби третьего типа получаем $$ \int \frac{Ax + B}{x^2 + px + q} \mathrm{d}x = \frac{A}{2} \ln \left| x^2 + px + q\right| + \frac{2B - pA}{2a} \text{arctg}\frac{x + p/2}{a} + C, $$ где %%a^2 = q - p^2 / 4 > 0%%.

Вычисление интеграла 4 типа сложно, поэтому в этом курсе не рассматривается.

Прежде, чем приступить к интегрированию простейших дробей для нахождения неопределенного интеграла дробно рациональной функции, рекомендуется освежить в памяти раздел «Разложение дроби на простейшие».

Пример 1

Найдем неопределенный интеграл ∫ 2 x 3 + 3 x 3 + x d x .

Решение

Выделим целую часть, проведя деление столбиком многочлена на многочлен, учитывая тот факт, что степень числителя подынтегральной функции равна степени знаменателя:

Поэтому 2 x 3 + 3 x 3 + x = 2 + - 2 x + 3 x 3 + x . Мы получили правильную рациональную дробь - 2 x + 3 x 3 + x , которую теперь разложим на простейшие дроби - 2 x + 3 x 3 + x = 3 x - 3 x + 2 x 2 + 1 . Следовательно,

∫ 2 x 3 + 3 x 3 + x d x = ∫ 2 + 3 x - 3 x + 2 x 2 + 1 d x = ∫ 2 d x + ∫ 3 x d x - ∫ 3 x + 2 x 2 + 1 d x = 2 x + 3 ln x - ∫ 3 x + 2 x 2 + 1 d x

Мы получили интеграл простейшей дроби третьего типа. Взять его можно методом подведения под знак дифференциала.

Так как d x 2 + 1 = 2 x d x , то 3 x d x = 3 2 d x 2 + 1 . Поэтому
∫ 3 x + 2 x 2 + 1 d x = ∫ 3 x x 2 + 1 d x + ∫ 2 x 2 + 1 = 3 2 ∫ d x 2 + 1 x 2 + 1 + 2 ∫ d x x 2 + 1 = 3 2 ln x 2 + 1 + 2 a r c t g x + C 1

Следовательно,
∫ 2 x 3 + 3 x 3 + x d x = 2 x + 3 ln x - ∫ 3 x + 2 x 2 + 1 d x = 2 x + 3 ln x - 3 2 ln x 2 + 1 - 2 a r c tan x + C , где С = - С 1

Опишем методы интегрирования простейших дробей каждого из четырех типов.

Интегрирование простейших дробей первого типа A x - a

Используем для решения этой задачи метод непосредственного инетгрирования:

∫ A x - a d x = A ∫ d x x - a = A · ln x - a + C

Пример 2

Найдите множество первообразных функции y = 3 2 x - 1 .

Решение

Испльзуя правило интегрирования, свойства первообразной и таблицу первообразных, найдем неопределенный интеграл ∫ 3 d x 2 x - 1: ∫ f k · x + b d x = 1 k · F k · x + b + C

∫ 3 d x 2 x - 1 = 3 ∫ d x 2 x - 1 2 = 3 2 ∫ d x x - 1 2 = 3 2 ln x - 1 2 + C

Ответ: ∫ 3 d x 2 x - 1 = 3 2 ln x - 1 2 + C

Интегрирование простейших дробей второго типа A x - a n

Здесь также применим метод непосредственного интегрирования: ∫ A x - a n d x = A ∫ x - a - n d x = A - n + 1 x - a - n + 1 + C = A 1 - n x - a n - 1 + C

Пример 3

Необходимо найти неопределенный интеграл ∫ d x 2 x - 3 7 .

Решение

∫ d x 2 x - 3 7 = ∫ d x 2 x - 3 2 7 = 1 2 7 ∫ x - 3 2 - 7 d x = = 1 2 7 · 1 - 7 + 1 · x - 3 2 - 7 + 1 + C = 1 2 7 · - 6 · x - 3 2 6 + C = = 1 2 · - 6 · 2 6 · x - 3 2 6 + C = - 1 12 · 1 2 x - 3 6 + C

Ответ: ∫ d x 2 x - 3 7 = - 1 12 · 1 2 x - 3 6 + C

Интегрирование простейших дробей третьего типа M x + N x 2 + p x + q , D = p 2 - 4 q < 0

Первым шагом представим неопределенный интеграл ∫ M x + N x 2 + p x + q в виде суммы:

∫ M x + N x 2 + p x + q d x = ∫ M x x 2 + p x + q d x + N ∫ d x x 2 + p x + q

Для того, чтобы взять первый интеграл, используем метод подведения под знак дифференциала:

∫ M x x 2 + p x + q d x = d x 2 + p x + q = 2 x + p d x = 2 x d x + p d x ⇒ 2 x d x = d x 2 + p x + q - p d x ⇒ M x d x = M 2 d x 2 + p x + q - p M 2 d x = = ∫ M 2 d x 2 + p x + q - p M 2 d x x 2 + p x + q = = M 2 ∫ d x 2 + p x + q x 2 + p x + q - p M 2 ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q - p M 2 ∫ d x x 2 + p x + q

Поэтому,
∫ M x + N x 2 + p x + q d x = ∫ M x x 2 + p x + q d x + N ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q - p M 2 ∫ d x x 2 + p x + q + N ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q + 2 N - p M 2 · ∫ d x x 2 + p x + q

Мы получили интеграл ∫ d x x 2 + p x + q . Проведем преобразование его знаменателя:

∫ d x x 2 + p x + q = ∫ d x x 2 + p x + p 2 2 - p 2 2 + q = = ∫ d x x + p 2 2 - p 2 4 + q = ∫ d x x + p 2 2 - p 2 4 + q = = ∫ d x x + p 2 2 + 4 q - p 2 4 = 2 4 q - p 2 · a r c t g 2 x + p 2 4 q - p 2 + C 1

Следовательно,

∫ M x + N x 2 + p x + q d x = M 2 ln x 2 + p x + q + 2 N - p M 2 · ∫ d x x 2 + p x + q = = M 2 ln x 2 + p x + q + 2 N - p M 2 · 2 4 q - p 2 · a r c t g 2 x + p 2 4 q - p 2 + C 1

Формула интегрирования простейших дробей третьего типа принимает вид:
∫ M x + N x 2 + p x + q d x = M 2 ln x 2 + p x + q + 2 N - p M 4 q - p 2 · a r c t g 2 x + p 2 4 q - p 2 + C

Пример 4

Необходимо найти неопределенный интеграл ∫ 2 x + 1 3 x 2 + 6 x + 30 d x .

Решение

Применим формулу:

∫ 2 x + 1 3 x 2 + 6 x + 30 d x = 1 3 ∫ 2 x + 1 x 2 + 2 x + 10 d x = M = 2 , N = 1 , p = 2 , q = 10 = = 1 3 2 2 ln x 2 + 2 x + 10 + 2 · 1 - 2 · 2 4 · 10 - 2 2 a r c t g 2 x + 2 2 4 · 10 - 2 2 + C = = 1 3 ln x 2 + 2 x + 10 - 1 9 a r c t g x + 1 3 + C

Второй вариант решения выглядит следующим образом:

∫ 2 x + 1 3 x 2 + 6 x + 30 d x = 1 3 ∫ 2 x + 1 x 2 + 2 x + 10 d x = d (x 2 + 2 x + 10 = (2 x + 2) d x = = 1 3 ∫ 2 x + 2 - 1 x 2 + 2 x + 10 d x = 1 3 ∫ d (x 2 + 2 x + 10) x 2 + 2 x + 10 = 1 3 ∫ d x x 2 + 2 x + 10 = = п р е о б р а з у е м з н а м е н а т е л ь = 1 3 ln x 2 + 2 x + 10 - 1 3 ∫ d (x) x + 1 2 + 9 = = 1 3 ln x 2 + 2 x + 10 - 1 9 a r c t g x + 1 3 + C

Ответ: ∫ 2 x + 1 3 x 2 + 6 x + 30 d x = 1 3 ln x 2 + 2 x + 10 - 1 9 a r c t g x + 1 3 + C

Интегрирование простейших дробей четвертого типа M x + N (x 2 + p x + q) n , D = p 2 - 4 q < 0

Первым делом выполняем подведение под знак дифференциала:

∫ M x + N x 2 + p x + q d x = d (x 2 + p x + q) = (2 x + p) d x = = M 2 ∫ d (x 2 + p x + q) (x 2 + p x + q) n + N - p M 2 ∫ d x (x 2 + p x + q) n = = M 2 (- n + 1) · 1 (x 2 + p x + q) n - 1 + N - p M 2 ∫ d x (x 2 + p x + q) n

Затем находим интеграл вида J n = ∫ d x (x 2 + p x + q) n с использованием рекуррентных формул. Информацию о рекуррентных формулах можно посмотреть в теме «Интегрирование с использованием рекуррентных формул».

Для решения нашей задачи подходит рекуррентная формула вида J n = 2 x + p (n - 1) (4 q - p 2) (x 2 + p x + q) n - 1 + 2 n - 3 n - 1 · 2 4 q - p 2 · J n - 1 .

Пример 5

Необходимо найти неопределенный интеграл ∫ d x x 5 x 2 - 1 .

Решение

∫ d x x 5 x 2 - 1 = ∫ x - 5 (x 2 - 1) - 1 2 d x

Мы будем использовать для этого вида подынтегральной функции метод подстановки. Введем новую переменную x 2 - 1 = z 2 x = (z 2 + 1) 1 2 d x = z (z 2 + 1) - 1 2 d x

Получаем:

∫ d x x 5 x 2 - 1 = ∫ x - 5 (x 2 - 1) - 1 2 d x = = ∫ (z 2 + 1) - 5 2 · z - 1 · z · (z 2 + 1) - 1 2 d z = ∫ d z (z 2 + 1) 3

Пришли к нахождению интеграла дроби четвертого типа. В нашем случае имеем коэффициенты М = 0 , р = 0 , q = 1 , N = 1 и n = 3 . Применяем рекуррентную формулу:

J 3 = ∫ d z (z 2 + 1) 3 = 2 z + 0 (3 - 1) · (4 · 1 - 0) · z 2 + 1 3 - 1 + 2 · 3 - 3 3 - 1 · 2 4 · 1 - 0 · ∫ d z (z 2 + 1) 2 = = z 4 (z 2 + 1) 2 + 3 4 2 z (2 - 1) · (4 · 1 - 0) · (z 2 + 1) 2 - 1 + 2 · 2 - 3 2 - 11 · 2 4 · 1 - 0 · ∫ d z z 2 + 1 = = z 4 (z 2 + 1) 2 + 3 8 z z 2 + 1 + 3 8 a r c t g (z) + C

После обратной замены z = x 2 - 1 получаем результат:
∫ d x x 5 x 2 - 1 = x 2 - 1 4 x 4 + 3 8 x 2 - 1 x 2 + 3 8 a r c t g x 2 - 1 + C

Ответ: ∫ d x x 5 x 2 - 1 = x 2 - 1 4 x 4 + 3 8 x 2 - 1 x 2 + 3 8 a r c t g x 2 - 1 + C

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Задача нахождения неопределенного интеграла дробно рациональной функции сводится к интегрированию простейших дробей. Поэтому рекомендуем для начала ознакомиться с разделом теории разложение дроби на простейшие.

Пример.

Найти неопределенный интеграл .

Решение.

Так как степень числителя подынтегральной функции равна степени знаменателя, то для начала выделяем целую часть, проводя деление столбиком многочлена на многочлен:

Поэтому, .

Разложение полученной правильной рациональной дроби на простейшие дроби имеет вид . Следовательно,

Полученный интеграл представляет собой интеграл простейшей дроби третьего типа. Забегая немного вперед, отметим, что взять его можно методом подведения под знак дифференциала.

Так как , то . Поэтому

Следовательно,

Теперь перейдем к описанию методов интегрирования простейших дробей каждого из четырех типов.

Интегрирование простейших дробей первого типа

Для решения этой задачи идеально подходит метод непосредственного интегрирования:

Пример.

Найти множество первообразных функции

Решение.

Найдем неопределенный интеграл , используя свойства первообразной, таблицу первообразных и правило интегрирования .

К началу страницы

Интегрирование простейших дробей второго типа

Для решения этой задачи также подходит метод непосредственного интегрирования:

Пример.

Решение.

К началу страницы

Интегрирование простейших дробей третьего типа

Для начала представляем неопределенный интеграл в виде суммы:

Первый интеграл берем методом подведения под знак дифференциала:

Поэтому,

У полученного интеграла преобразуем знаменатель:

Следовательно,

Формула интегрирования простейших дробей третьего типа принимает вид:

Пример.

Найдите неопределенный интеграл .

Решение.

Используем полученную формулу:

Если бы у нас не было этой формулы, то как бы мы поступили:

К началу страницы

Интегрирование простейших дробей четвертого типа

Первый шаг – подводим под знак дифференциала:

Второй шаг – нахождение интеграла вида . Интегралы подобного вида находятся с использованием рекуррентных формул. (Смотрите раздел интегрирование с использованием рекуррентных формул). Для нашего случая подходит следующая рекуррентная формула:

Пример.

Найдите неопределенный интеграл

Решение.

Для данного вида подынтегральной функции используем метод подстановки. Введем новую переменную (смотрите раздел интегрирование иррациональных функций):



После подстановки имеем:

Пришли к нахождению интеграла дроби четвертого типа. В нашем случае имеем коэффициенты М = 0, р = 0, q = 1, N = 1 и n = 3 . Применяем рекуррентную формулу:

После обратной замены получаем результат:

Интегрирование тригонометрических функций
1.Интегралы вида вычисляются преобразованием произведения тригонометрических функций в сумму по формулам: Например, 2.Интегралы вида , где m или n – нечетное положительное число, вычисляются подведением под знак дифференциала. Например,
3.Интегралы вида , где m и n –четные положительные числа, вычисляются с помощью формул понижения степени: Например,
4.Интегралы где вычисляются заменой переменной: или Например,
5.Интегралы вида сводятся к интегралам от рациональных дробей с помощью универсальной тригонометрической подстановки тогда (т.к. =[после деления числителя и знаменателя на ]= ; Например,
Следует заметить, что использование универсальной подстановки нередко приводит к громоздким выкладкам.
§5. Интегрирование простейших иррациональностей
Рассмотрим методы интегрирования простейших видов иррациональностей. 1. Функции такого вида интегрируются так же, как простейшие рациональные дроби 3–го типа: в знаменателе из квадратного трехчлена выделяется полный квадрат и вводится новая переменная. Пример. 2. (под знаком интеграла–рациональная функция аргументов ). Интегралы такого вида вычисляются с помощью замены . В частности, в интегралах вида обозначают . Если подынтегральная функция содержит корни разных степеней: , то обозначают , где n – наименьшее общее кратное чиселm,k . Пример 1.
Пример 2. –неправильная рациональная дробь, выделим целую часть:


3.Интегралы вида вычисляются с помощью тригонометрических подстановок:

44

45 Определённый интеграл

Определённый интеграл - аддитивный монотонный нормированный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция илифункционал, а вторая - область в множестве задания этой функции (функционала).

Определение

Пусть определена на . Разобьём на части с несколькими произвольными точками . Тогда говорят, что произведено разбиение отрезка Далее выберем произвольную точку , ,

Определённым интегралом от функции на отрезке называется предел интегральных сумм при стремлении ранга разбиения к нулю , если он существует независимо от разбиения и выбора точек , то есть

Если существует указанный предел, то функция называется интегрируемой на по Риману.

Обозначения

· - нижний предел.

· - верхний предел.

· - подынтегральная функция.

· - длина частичного отрезка.

· - интегральная сумма от функции на соответствующей разбиению .

· - максимальная длина част.отрезка.

Свойства

Если функция интегрируема по Риману на , то она ограничена на нем.

Геометрический смысл

Определённый интеграл как площадь фигуры

Определённый интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми и и графиком функции .

Теорема Ньютона - Лейбница

[править]

(перенаправлено с «Формула Ньютона-Лейбница»)

Формула Ньютона - Лейбница или основная теорема анализа даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной.

Доказательство

Пусть на отрезке задана интегрируемая функция . Начнем с того, что отметим, что

то есть не имеет никакого значения, какая буква ( или ) стоит под знаком в определенном интеграле по отрезку .

Зададим произвольное значение и определим новую функцию . Она определена для всех значений , потому что мы знаем, что если существует интеграл от на , то существует также интеграл от на , где . Напомним, что мы считаем по определению

(1)

Заметим, что

Покажем, что непрерывна на отрезке . В самом деле, пусть ; тогда

и если , то

Таким образом, непрерывна на независимо от того, имеет или не имеет разрывы; важно, что интегрируема на .

На рисунке изображен график . Площадь переменной фигуры равна . Ее приращение равно площади фигуры , которая в силу ограниченности , очевидно, стремится к нулю при независимо от того, будет ли точкой непрерывности или разрыва , например точкой .

Пусть теперь функция не только интегрируема на , но непрерывна в точке . Докажем, что тогда имеет в этой точке производную, равную

(2)

В самом деле, для указанной точки

(1) , (3)

Мы положили , а так как постоянная относительно ,TO . Далее, в силу непрерывности в точке для всякого можно указать такое , что для .

что доказывает, что левая часть этого неравенства есть о(1) при .

Переход к пределу в (3) при показывает существование производной от в точке и справедливость равенства (2). При речь здесь идет соответственно о правой и левой производной.

Если функция непрерывна на , то на основании доказанного выше соответствующая ей функция

(4)

имеет производную, равную . Следовательно, функция есть первообразная для на .

Это заключение иногда называется теоремой об интеграле с переменным верхним пределом или теоремой Барроу.

Мы доказали, что произвольная непрерывная на отрезке функция имеет на этом отрезке первообразную, определенную равенством (4). Этим доказано существование первообразной для всякой непрерывной на отрезке функции.

Пусть теперь есть произвольная первообразная функции на . Мы знаем, что , где - некоторая постоянная. Полагая в этом равенстве и учитывая, что , получим .

Таким образом, . Но

Несобственный интеграл

[править]

Материал из Википедии - свободной энциклопедии

Определённый интеграл называется несобственным , если выполняется, по крайней мере, одно из следующих условий:

· Предел a или b (или оба предела) являются бесконечными;

· Функция f(x) имеет одну или несколько точек разрыва внутри отрезка .

[править]Несобственные интегралы I рода

. Тогда:

1. Если и интеграл называется . В этом случае называется сходящимся.

, или просто расходящимся.

Пусть определена и непрерывна на множестве от и . Тогда:

1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана первого рода . В этом случае называется сходящимся.

2. Если не существует конечного ( или ), то интеграл называется расходящимся к , или просто расходящимся.

Если функция определена и непрерывна на всей числовой прямой, то может существовать несобственный интеграл данной функции с двумя бесконечными пределами интегрирования, определяющийся формулой:

, где с - произвольное число.

[править]Геометрический смысл несобственного интеграла I рода

Несобственный интеграл выражает площадь бесконечно длинной криволинейной трапеции.

[править]Примеры

[править]Несобственные интегралы II рода

Пусть определена на , терпит бесконечный разрыв в точке x=a и . Тогда:

1. Если , то используется обозначение и интеграл называется

называется расходящимся к , или просто расходящимся.

Пусть определена на , терпит бесконечный разрыв при x=b и . Тогда:

1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана второго рода . В этом случае интеграл называется сходящимся.

2. Если или , то обозначение сохраняется, а называется расходящимся к , или просто расходящимся.

Если функция терпит разрыв во внутренней точке отрезка , то несобственный интеграл второго рода определяется формулой:

[править]Геометрический смысл несобственных интегралов II рода

Несобственный интеграл выражает площадь бесконечно высокой криволинейной трапеции

[править]Пример

[править]Отдельный случай

Пусть функция определена на всей числовой оси и имеет разрыв в точках .

Тогда можно найти несобственный интеграл

[править]Критерий Коши

1. Пусть определена на множестве от и .

Тогда сходится

2. Пусть определена на и .

Тогда сходится

[править]Абсолютная сходимость

Интеграл называется абсолютно сходящимся , если сходится.
Если интеграл сходится абсолютно, то он сходится.

[править]Условная сходимость

Интеграл называется условно сходящимся , если сходится, а расходится.

48 12. Несобственные интегралы.

При рассмотрении определённых интегралов мы предполагали, что область интегрирования ограничена (более конкретно, является отрезком [a ,b ]); для существования определённого интеграла необходима ограниченность подынтегральной функции на [a ,b ]. Будем называть определённые интегралы, для которых выполняются оба эти условия (ограниченность и области интегрирования, и подынтегральной функции) собственными ; интегралы, для которых нарушаются эти требования (т.е. неограничена либо подынтегральная функция, либо область интегрирования, либо и то, и другое вместе) несобственными . В этом разделе мы изучим несобственные интегралы.

  • 12.1. Несобственные интегралы по неограниченному промежутку (несобственные интегралы первого рода).
    • 12.1.1. Определение несобственного интеграла по бесконечному промежутку. Примеры.
    • 12.1.2. Формула Ньютона-Лейбница для несобственного интеграла.
    • 12.1.3. Признаки сравнения для неотрицательных функций.
      • 12.1.3.1. Признак сравнения.
      • 12.1.3.2. Признак сравнения в предельной форме.
    • 12.1.4. Абсолютная сходимость несобственных интегралов по бесконечному промежутку.
    • 12.1.5. Признаки сходимости Абеля и Дирихле.
  • 12.2. Несобственные интегралы от неограниченных функций (несобственные интегралы второго рода).
    • 12.2.1. Определение несобственного интеграла от неограниченной функции.
      • 12.2.1.1. Особенность на левом конце промежутка интегрирования.
      • 12.2.1.2. Применение формулы Ньютона-Лейбница.
      • 12.2.1.3. Особенность на правом конце промежутка интегрирования.
      • 12.2.1.4. Особенность во внутренней точке промежутка интегрирования.
      • 12.2.1.5. Несколько особенностей на промежутке интегрирования.
    • 12.2.2. Признаки сравнения для неотрицательных функций.
      • 12.2.2.1. Признак сравнения.
      • 12.2.2.2. Признак сравнения в предельной форме.
    • 12.2.3. Абсолютная и условная сходимость несобственных интегралов от разрывных функций.
    • 12.2.4. Признаки сходимости Абеля и Дирихле.

12.1. Несобственные интегралы по неограниченному промежутку

(несобственные интегралы первого рода).

12.1.1. Определение несобственного интеграла по бесконечному промежутку . Пусть функция f (x ) определена на полуоси и интегрируема по любому отрезку [ от, подразумевая в каждом из этих случаев существование и конечность соответствующих пределов. Теперь решения примеров выглядят более просто: .

12.1.3. Признаки сравнения для неотрицательных функций . В этом разделе мы будем предполагать, что все подынтегральные функции неотрицательны на всей области определения. До сих пор мы определяли сходимость интеграла, вычисляя его: если существует конечный предел первообразной при соответствующем стремлении ( или ), то интеграл сходится, в противном случае - расходится. При решении практических задач, однако, важно в первую очередь установить сам факт сходимости, и только затем вычислять интеграл (к тому же первообразная часто не выражается через элементарные функции). Сформулируем и докажем ряд теорем, которые позволяют устанавливать сходимость и расходимость несобственных интегралов от неотрицательных функций, не вычисляя их.
12.1.3.1. Признак сравнения . Пусть функции f (x ) и g (x ) интегр

Дробь называется правильной , если старшая степень числителя меньше старшей степени знаменателя. Интеграл правильной рациональной дроби имеет вид:

$$ \int \frac{mx+n}{ax^2+bx+c}dx $$

Формула на интегрирование рациональных дробей зависит от корней многочлена в знаменателе. Если многочлен $ ax^2+bx+c $ имеет:

  1. Только комплексные корни, то из него необходимо выделить полный квадрат: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{mx+n}{x^2 \pm a^2} $$
  2. Различные действительные корни $ x_1 $ и $ x_2 $, то нужно выполнить разложение интеграла и найти неопределенные коэффициенты $ A $ и $ B $: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{x-x_1} dx + \int \frac{B}{x-x_2} dx $$
  3. Один кратный корень $ x_1 $, то выполняем разложение интеграла и находим неопределенные коэффициенты $ A $ и $ B $ для такой формулы: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{(x-x_1)^2}dx + \int \frac{B}{x-x_1} dx $$

Если дробь является неправильной , то есть старшая степень в числителе больше либо равна старшей степени знаменателя, то сначала её нужно привести к правильному виду путём деления многочлена из числителя на многочлен из знаменателя. В данном случае формула интегрирования рациональной дроби имеет вид:

$$ \int \frac{P(x)}{ax^2+bx+c}dx = \int Q(x) dx + \int \frac{mx+n}{ax^2+bx+c}dx $$

Примеры решений

Пример 1
Найти интеграл рациональной дроби: $$ \int \frac{dx}{x^2-10x+16} $$
Решение

Дробь является правильной и многочлен имеет только комплексные корни. Поэтому выделим полный квадрат:

$$ \int \frac{dx}{x^2-10x+16} = \int \frac{dx}{x^2-2\cdot 5 x+ 5^2 - 9} = $$

Сворачиваем полный квадрат и подводим под знак дифференциала $ x-5 $:

$$ = \int \frac{dx}{(x-5)^2 - 9} = \int \frac{d(x-5)}{(x-5)^2-9} = $$

Пользуясь таблицей интегралов получаем:

$$ = \frac{1}{2 \cdot 3} \ln \bigg | \frac{x-5 - 3}{x-5 + 3} \bigg | + C = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \frac{dx}{x^2-10x+16} = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$
Пример 2
Выполнить интегрирование рациональных дробей: $$ \int \frac{x+2}{x^2+5x-6} dx $$
Решение

Решим квадратное уравнение: $$ x^2+5x-6 = 0 $$

$$ x_{12} = \frac{-5\pm \sqrt{25-4\cdot 1 \cdot (-6)}}{2} = \frac{-5 \pm 7}{2} $$

Записываем корни:

$$ x_1 = \frac{-5-7}{2} = -6; x_2 = \frac{-5+7}{2} = 1 $$

С учётом полученных корней, преобразуем интеграл:

$$ \int \frac{x+2}{x^2+5x-6} dx = \int \frac{x+2}{(x-1)(x+6)} dx = $$

Выполняем разложение рациональной дроби:

$$ \frac{x+2}{(x-1)(x+6)} = \frac{A}{x-1} + \frac{B}{x+6} = \frac{A(x-6)+B(x-1)}{(x-1)(x+6)} $$

Приравниваем числители и находим коэффициенты $ A $ и $ B $:

$$ A(x+6)+B(x-1)=x+2 $$

$$ Ax + 6A + Bx - B = x + 2 $$

$$ \begin{cases} A + B = 1 \\ 6A - B = 2 \end{cases} $$

$$ \begin{cases} A = \frac{3}{7} \\ B = \frac{4}{7} \end{cases} $$

Подставляем в интеграл найденные коэффициенты и решаем его:

$$ \int \frac{x+2}{(x-1)(x+6)}dx = \int \frac{\frac{3}{7}}{x-1} dx + \int \frac{\frac{4}{7}}{x+6} dx = $$

$$ = \frac{3}{7} \int \frac{dx}{x-1} + \frac{4}{7} \int \frac{dx}{x+6} = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Ответ
$$ \int \frac{x+2}{x^2+5x-6} dx = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$