К инструментам процесса контроль качества относятся. Семь инструментов контроля качества

ВАРИАНТ 1:

Теория: Семь инструментов качества (графические методы оценки качества продукции)

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Семь простых инструментов качества. . . . . . . . . . . . . . . . . . . . . . . . . . .3

    Причинно-следственная диаграмма (диаграмма Ишикавы). . . . 5

    Контрольные листки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Гистограммы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Диаграммы разброса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Анализ Парето. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Стратификация. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    Контрольные карты. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Задача. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Введение

В современном мире чрезвычайно важное значение приобретает проблема качества продукции. От ее успешного решения в значительной степени зависит благополучие любой фирмы, любого поставщика. Продукция более высокого качества существенно повышает шансы поставщика в конкурентной борьбе за рынки сбыта и, самое важное, лучше удовлетворяет потребности потребителей. Качество продукции - это важнейший показатель конкурентоспособности предприятия.

Качество продукции закладывается в процессе научных исследований, конструкторских и технологических разработок, обеспечивается хорошей организацией производства и, наконец, оно поддерживается в процессе эксплуатации или потребления. На всех этих этапах важно осуществлять своевременный контроль и получать достоверную оценку качества продукции.

Для уменьшения затрат и достижения уровня качества, удовлетворяющего потребителя нужны методы, направленные не на устранение дефектов (несоответствий) готовой продукции, а на предупреждение причин их появления в процессе производства.

Цель работы – изучение семи инструментов в области управления качеством продукции на предприятии. Задачи исследования: 1) Изучение этапов формирования методов контроля качества; 2) Изучение сущности семи инструментов качества. Объект исследования – методы исследования затрат на качество продукции.

    Семь простых инструментов качества

Существовавшие издавна методы контроля сводились, как правило, к анализу брака путем сплошной проверки изготовленных изделий. При массовом производстве такой контроль очень дорог. Расчеты показывают, что для обеспечения качества продукции посредством ее разбраковки контрольный аппарат предприятий должен в пять-шесть раз превышать количество производственных рабочих.

С другой стороны, сплошной контроль в массовом производстве не гарантирует отсутствия дефектных изделий в принятой продукции. Опыт показывает, что контролер быстро устает, в результате чего часть годной продукции принимает за дефектную и наоборот. Практика также показывает - там, где увлекаются сплошным контролем, резко возрастают убытки от брака.

Указанные причины поставили производство перед необходимостью перехода к выборочному контролю.

Статистические методы позволяют обоснованно обнаруживать разладку процесса даже тогда, когда две-три единицы продукции, отобранные для контроля, окажутся годными, так как обладают высокой чувствительностью к изменениям в состоянии технологических процессов.

Годами упорного труда специалисты выделяли из мирового опыта по крупицам такие приемы и подходы, которые можно понять и эффективно использовать без специальной подготовки, причем делалось это так, чтобы обеспечить реальные достижения при решении подавляющего большинства проблем, возникающих в реальном производстве.

Один из базовых принципов управления качеством состоит в принятии решений на основе фактов. Наиболее полно это решается методом моделирования процессов, как производственных, так и управленческих инструментами математической статистики. Однако, современные статистические методы довольно сложны для восприятия и широкого практического использования без углубленной математической подготовки всех участников процесса. К 1979 году Союз японских ученых и инженеров (JUSE) собрал воедино семь достаточно простых в использовании наглядных методов анализа процессов. При всей своей простоте они сохраняют связь со статистикой и дают профессионалам возможность пользоваться их результатами, а при необходимости - совершенствовать их.

Это так называемые семь простых методов:

1) диаграмма Парето;

2) схема Исикавы;

3) расслаивание (стратификация);

4) контрольные листки;

5) гистограммы;

6) графики (на плоскости)

7) контрольные карты (Шухарта).

Иногда эти методы перечисляют в ином порядке, что не принципиально, поскольку предполагается их рассмотрение и как отдельных инструментов, и как системы методов, в которой в каждом конкретном случае предполагается специально определить состав и структуру рабочего набора инструментов.

Применение статистических методов - весьма действенный путь разработки новой технологии и контроля качества производственных процессов. Многие ведущие фирмы стремятся к их активному использованию, и некоторые из них тратят более ста часов ежегодно на обучение этим методам, осуществляемое в рамках самой фирмы. Хотя знание статистических методов - часть нормального образования инженера, само знание еще не означает умения применить его. Способность рассматривать события с точки зрения статистики важнее, чем знание самих методов. Кроме того, надо уметь честно признавать недостатки и возникшие изменения и собирать объективную информацию.

    Причинно-следственная диаграмма (диаграмма Ишикавы)

Диаграмма типа 5М рассматривает такие компоненты качества, как “человек”, “машина”, “материал”, “метод”, “контроль”, а в диаграмме типа 6М к ним добавляется компонент “среда”. Применительно к решаемой задаче квалиметрического анализа, для компоненты “человек” необходимо определить факторы, связанные с удобством и безопасностью выполнения операций; для компоненты “машина” - взаимоотношения элементов конструкции анализируемого изделия между собой, связанные с выполнением данной операции; для компоненты “метод” - факторы, связанные с производительностью и точностью выполняемой операции; для компоненты “материал” - факторы, связанные с отсутствием изменений свойств материалов изделия в процессе выполнения данной операции; для компоненты “контроль” - факторы, связанные с достоверным распознаванием ошибки процесса выполнения операции; для компоненты “среда” - факторы, связанные с воздействием среды на изделие и изделия на среду.

Рис. 1 Пример диаграммы Ишикавы

    Контрольные листки

Контрольные листки могут применяться как при контроле по качественным, так и при контроле по количественным признакам.

Рис. 2 Контрольные листки

    Гистограммы

Гистограммы – один из вариантов столбчатой диаграммы, отображающий зависимость частоты попадания параметров качества изделия или процесса в определенный интервал значений от этих значений.

Гистограмма строится следующим образом:

    Определяем наибольшее значение показателя качества.

    Определяем наименьшее значение показателя качества.

    Определяем диапазон гистограммы как разницу между наибольшим и наименьшим значением.

    Определяем число интервалов гистограммы. Часто можно пользоваться приближенной формулой:

(число интервалов) = Ц (число значений показателей качества) Например, если число показателей = 50, число интервалов гистограммы = 7.

    Определяем длину интервала гистограммы = (диапазон гистограммы) / (число интервалов).

    Разбиваем диапазон гистограммы на интервалы.

    Подсчитываем число попаданий результатов в каждый интервал.

    Определяем частоту попаданий в интервал = (число попаданий)/(общее число показателей качества)

    Строим столбчатую диаграмму

    Диаграммы разброса

Диаграммы разброса представляют из себя графики вида, изображенного ниже, которые позволяют выявить корреляцию между двумя различными факторами.

Рис. 3 Диаграмма разброса: Взаимосвязи показателей качества практически нет.

Рис. 4 Диаграмма разброса: Имеется прямая взаимосвязь между показателями качества

Рис. 5 Диаграмма разброса: Имеется обратная взаимосвязь между показателями качества

    Анализ Парето

Анализ Парето получил свое название по имени итальянского экономиста Вилфредо Парето, который показал, большая часть капитала (80%) находится в руках незначительного количества людей (20%). Парето разработал логарифмические математические модели, описывающие это неоднородное распределение, а математик М.Оа. Лоренц представил графические иллюстрации.

Правило Парето - “универсальный” принцип, который применим во множестве ситуаций, и без сомнения - в решении проблем качества. Джозеф Джуран отметил “универсальное” применение принципа Парето к любой группе причин, вызывающих то или иное последствие, причем большая часть последствий вызвана малым количеством причин. Анализ Парето ранжирует отдельные области по значимости или важности и призывает выявить и в первую очередь устранить те причины, которые вызывают наибольшее количество проблем (несоответствий).

Анализ Парето как правило иллюстрируется диаграммой Парето (рис. ниже), на которой по оси абсцисс отложены причины возникновения проблем качества в порядке убывания вызванных ими проблем, а по оси ординат – в количественном выражении сами проблемы, причем как в численном, так и в накопленном (кумулятивном) процентном выражении.

На диаграмме отчетливо видна область принятия первоочередных мер, очерчивающая те причины, которые вызывают наибольшее количество ошибок. Таким образом, в первую очередь, предупредительные мероприятия должны быть направлены на решение проблем именно этих проблем.

Рис. 6 Диаграмма Парето

    Стратификация

В основном, стратификация - процесс сортировки данных согласно некоторым критериям или переменным, результаты которого часто показываются в виде диаграмм и графиков

Мы можем классифицировать массив данных в различные группы (или категории) с общими характеристиками, называемыми переменной стратификации. Важно установить, которые переменные будут использоваться для сортировки.

Стратификация - основа для других инструментов, таких как анализ Парето или диаграммы рассеивания. Такое сочетание инструментов делает их более мощными.

На рисунке приведен пример анализа источника возникновения дефектов. Все дефекты (100%) были классифицированы на четыре категории – по поставщикам, по операторам, по смене и по оборудованию. Из анализа представленных донных наглядно видно, что наибольший вклад в наличие дефектов вносит в данном случае «поставщик 1».

Рис. 7 Стратификация данных.

    Контрольные карты

Контрольные карты – специальный вид диаграммы, впервые предложенный В. Шухартом в 1925 г. Контрольные карты имеют вид, представленный на рис. 4.12. Они отображают характер изменения показателя качества во времени.

Рис. 8 Общий вид контрольной карты

Контрольные карты по количественным признакам

Контрольные карты по количественным признакам - это как правило сдвоенные карты, одна из которых изображает изменение среднего значения процесса, а 2-я - разброса процесса. Разброс может вычисляться или на основе размаха процесса R (разницы между наибольшим и наименьшим значением), или на основе среднеквадратического отклонения процесса S.

В настоящее время обычно используются x- S карты, x - R карты используются реже.

Контрольные карты по качественным признакам

Карта для доли дефектных изделий (p - карта)

В p - карте подсчитывается доля дефектных изделий в выборке. Она применяется, когда объем выборки - переменный.

Карта для числа дефектных изделий (np - карта)

В np - карте подсчитывается число дефектных изделий в выборке. Она применяется, когда объем выборки - постоянный.

Карта для числа дефектов в выборке (с - карта)

В с - карте подсчитывается число дефектов в выборке.

Карта для числа дефектов на одно изделие (u - карта )

В u - карте подсчитывается число дефектов на одно изделие в выборке.

Рис. 9 Бланк контрольной карты

Заключение

Политика предприятия должна быть нацелена на высокое качество. Брак, являющийся его противоположностью, может возникнуть на любом предприятии. Его надо учитывать.

Анализ расходов на качество проводится в основном с целью определения важнейших и первоочередных задач по повышению качества. В зависимости от целей, задач анализа на качество и возможностей получения необходимой информации методы анализа качества могут быть различны. На это влияет и прохождение продукцией определенного этапа деятельности предприятия.

Умело организованный анализ качества может стать источником значительной экономии для предприятия, а также может повысить имидж предприятия в глазах потенциальных клиентов.

Задание № 2:

Основываясь на методике построения графического изображения оценки качества, постройте для завода по изготовлению кровельных листов диаграмму парето по следующим данным о браке в производстве кровельных листов (табл.1):

Табл.1 - Данные о браке в производстве кровельных листов

Вид брака

Количество бракованных изделий

Потери от брака (тыс. руб.)

1. Боковые трещины

2. Шелушение краски

3. Коробление

4. Отклонение от перпендикулярности

5. Грязная поверхность

6. Шероховатость поверхности

7. Винтообразность

8. Трещины по поверхности

9. Боковой изгиб

10. Прочие причины

Используемая литература:

    Ильенкова С.Д. Управление качеством: учебник для студентов вузов – М.: ЮНИТИ-ДАНА,2007.- 352с.

    Исикава К. Японские методы управления качеством. М.: Экономика, 1998. – 250с.

    Лапидус В. А. Всеобщее качество в российских компаниях; Нац. Фонд подготовки кадров. – М.: Новости, 2000.- 435с.

    Леонов И. Т. Управление качеством продукции. М.: Изд-во стандартов, 1990.- 375с.

    Мазур И. И., Шапиро В. Д. Управление качеством: Учеб пособие для студентов вузов / И. И. Мазур, В. Д. Шапиро; Под общ. Ред. И. И. Мазура. М.: Омега-Л, 2005. – 256с.

Цель метода «Семь основных инструментов контроля качества» заключается в выявлении проблем, подлежащих первоочередному решению, на основе контроля действующего процесса, сбора, обработки и анализа полученных фактов (статистического материала) для последующего улучшения качества процесса.

Суть метода - контроль качества (сравнение запланированного показателя качества с действительным его значением) - это одна из основных функций в процессе управления качеством, а сбор, обработка и анализ фактов - важнейший этап этого процесса.

Из множества статистических методов для широкого применения выбраны только семь, которые понятны и могут легко применяться специалистами различного профиля. Они позволяют вовремя выявить и отобразить проблемы, установить основные факторы, с которых нужно начинать действовать, и распределить усилия с целью эффективного разрешения этих проблем.

Ожидаемый результат - решение до 95% всех проблем, возникающих на производстве.

Семь основных инструментов контроля качества – набор инструментов, позволяющих облегчить задачу контроля протекающих процессов и предоставить различного рода факты для анализа, корректировки и улучшения качества процессов.

1. Контрольный листок - инструмент для сбора данных и их автоматического упорядочения для облегчения дальнейшего использования собранной информации.

2. Гистограмма - инструмент, позволяющий зрительно оценить распределение статистических данных, сгруппированных по частоте попадания данных в определенный (заранее заданный) интервал.

3. Диаграмма Парето - инструмент, позволяющий объективно представить и выявить основные факторы, влияющие на исследуемую проблему, и распределить усилия для ее эффективного разрешения.

4. Метод стратификации (расслаивания данных) - инструмент, позволяющий произвести разделение данных на подгруппы по определенному признаку.

5. Диаграмма разброса (рассеивания) - инструмент, позволяющий определить вид и тесноту связи между парами соответствующих переменных.

6. Диаграмма Исикавы (причинно-следственная диаграмма) - инструмент, который позволяет выявить наиболее существенные факторы (причины), влияющие на конечный результат (следствие).

7. Контрольная карта - инструмент, позволяющий отслеживать ход протекания процесса и воздействовать на него (с помощью соответствующей обратной связи), предупреждая его отклонения от предъявленных к процессу требований.

Контрольные листы (или сбор данных) - специальные бланки для сбора данных. Они облегчают процесс сбора, способствуют точности сбора данных и автоматически приводят к некоторым выводам, что очень удобно для быстрого анализа. Результаты легко преобразуются в гистограмму или диаграмму Парето. Контрольные листки могут применяться как при контроле по качественным, так и при контроле по количественным признакам. Форма контрольного листа может быть разной, в зависимости от его назначения.


Для нахождения правильного пути достижения поставленной цели или решения возникшей проблемы, первое, что необходимо сделать - собрать необходимую информацию, которая послужит основой для дальнейшего анализа. Желательно, чтобы собранные данные были представлены в структурированной и удобной для обработки форме. Для этого, а также для уменьшения вероятности возникновения ошибок при сборе данных применяют контрольный листок.

Контрольный листок – форма, предназначенная для сбора данных и их автоматического упорядочивания, что позволяет облегчить дальнейшее использование собранной информации.

По своей сути контрольный листок - бумажный бланк, на котором напечатаны контролируемые параметры, в соответствии с которыми, при помощи пометок или простых символов, в листок заносятся необходимые и достаточные данные. То есть контрольный листок – средство регистрации данных.

Форма контрольного листка зависит от поставленной задачи и может быть очень разнообразной, но в любом случае в ней рекомендуется указывать:

Тему, объект исследования (обычно указывается в заголовке контрольного листка);

Период регистрации данных;

Источник данных;

Должность и фамилию работника, регистрирующего данные;

Условные обозначения, для регистрации полученных данных;

Таблицу регистрации данных.

При подготовке контрольных листков нужно следить за тем, чтобы использовались наиболее простые способы их заполнения (цифры, условные значки), число контролируемых параметров было по возможности наименьшим (но достаточным для анализа и решения проблемы), а форма листка была как можно понятнее и удобнее для заполнения даже неквалифицированным персоналом.

1. Сформулируйте цель и задачи, для которых собирается информация.

2. Выберите методы контроля качества, с помощью которых будет производиться дальнейший анализ и обработка собранных данных.

3. Определите временной период, в течение которого будут проводиться исследования.

4. Разработайте меры (создайте условия) для добросовестного и своевременного внесения данных в контрольный листок.

5. Назначьте ответственных за сбор данных.

6. Разработайте форму бланка контрольного листка.

7. Подготовьте инструкции по выполнению сбора данных.

8. Проведите инструктаж и обучение работников сбору данных и внесению их в контрольный листок.

9. Организуйте периодические проверки сбора данных.

Самым острым вопросом, возникающим при решении проблемы, является достоверность собираемой персоналом информации. Найти решение на основании искаженных данных очень затруднительно (если вообще возможно). Принятие мер (создание условий) для регистрации работниками истинных данных является необходимым условием для достижения поставленной задачи.

Рис. Примеры контрольного листка

Возможно использование электронных бланков

При этом к минусам электронной формы контрольного листка по сравнению с бумажной можно отнести:

- б о льшую сложность для использования;

- необходимость тратить больше времени на внесение данных.

К плюсам:

- удобство обработки и анализа данных;

- высокая скорость получения необходимой информации;

- возможность одновременного доступа к информации множества людей.

Однако большинство собираемых данных приходится дублировать в бумажном виде. Проблема в том, что это ведет к снижению производительности: время, которое экономится на проведение анализа, хранение и получение необходимой информации большей частью нивелируется за счет двойной работы по регистрации данных.

Гистограмма – инструмент, который позволяет наглядно изобразить и легко выявить структуру и характер изменения полученных данных (оценить распределение), которые трудно заметить при их табличном представлении.

Проведя анализ формы полученной гистограммы и ее местоположения относительно интервала допуска можно сделать заключение о качестве рассматриваемой продукции или состоянии изучаемого процесса. На основе заключения вырабатываются меры по устранению отклонений качества продукции или состояния процесса от нормы.

В зависимости от способа представления (сбора) исходных данных, методика построения гистограммы разбивается на 2 варианта:

I вариант Для сбора статистических данных разрабатываются контрольные листки показателей продукции или процесса. При разработке бланка контрольных листков необходимо сразу определиться с количеством и размером интервалов, в соответствии с которыми будет производиться сбор данных, на основе которых в свою очередь будет построена гистограмма. Это необходимо в связи с тем, что после заполнения контрольного листка пересчитать значения показателя для других интервалов будет практически невозможно. Максимум, что можно будет сделать – не учитывать интервалы, в которые не попало ни одно значение и объединять по 2, 3 и т.д. интервала, не боясь исказить данные. Как вы понимаете при таких ограничениях, к примеру, из 11 интервалов сделать 7 практически невозможно.

Методика построения :

1. Определите количество и ширину интервалов для контрольного листка.

Точное количество и ширину интервалов стоит выбирать исходя из удобства использования или по правилам статистики. Если для измеряемого показателя существуют допуски, то стоит ориентироваться на 6-12 интервалов внутри допуска и 2-3 интервала за пределами допуска. Если допусков нет, то оцениваем возможный разброс значений показателя и тоже делим на 6-12 интервалов. При этом ширина интервалов обязательно должна быть одинаковой.

2. Разработайте контрольные листки и с их помощью произведите сбор необходимых данных.

3. С помощью заполненных контрольных листков подсчитайте частоту попадания (т.е. сколько раз) полученных значений показателя в каждый интервал.

Обычно для этого выделяют отдельный столбец, расположенный в конце таблицы регистрации данных.

Если значение показателя точно соответствует границе интервала, то добавьте по половинке обоим интервалам на границу которых попало значение показателя.

4. Для построения гистограммы используйте только те интервалы, в которые попало хотя бы одно значение показателя.

Если между интервалами, в которые попали значения показателя, имеются пустые интервалы, то их тоже нужно построить на гистограмме.

5. Вычислите среднее значение результатов наблюдения.

На гистограмму необходимо нанести среднее арифметическое значение полученной выборки.

Стандартная формула, используемая для вычислений:

где x i – полученные значения показателя,

N – общее количество полученных данных в выборке.

Каким образом ею воспользоваться, если нет точных значений показателя x 1 , x 2 и т.д. нигде не объясняется. В нашем случае для приблизительной оценки среднего арифметического могу предложить воспользоваться собственной методикой:

а) определите среднее значение для каждого интервала по формуле:

где j – интервалы, выбранные для построения гистограммы,

x j max – значение верхней границы интервала,

x j min – значение нижней границы интервала.

б) определите среднее арифметическое выборки по формуле:

где n – количество выбранных интервалов для построения гистограммы,

v j – частота попадания результатов выборки в интервал.

6. Постройте горизонтальную и вертикальную оси.

7. На горизонтальную ось нанесите границы выбранных интервалов.

Если в дальнейшем планируется сравнивать гистограммы, описывающие похожие факторы или характеристики, то стоит при нанесении шкалы на ось абсцисс руководствоваться не интервалами, а единицами измерения данных.

8. На вертикальную ось нанесите шкалу значений в соответствии с выбранным масштабом и диапазоном.

9. Для каждого выбранного интервала постройте столбик, ширина которого равна интервалу, а высота равна частоте попадания результатов наблюдений в соответствующий интервал (частота уже подсчитана ранее).

Нанесите на график линию, соответствующую среднему арифметическому значению исследуемого показателя. При наличии поля допуска постройте линии, соответствующие границам и центру интервала допуска.

II вариант Статистические данные уже собраны (например, проставлены в журналах регистрации) или их предполагается собрать в виде точно измеренных значений. В связи с этим мы не ограничены никакими начальными условиями, поэтому можем выбирать, а также в любой момент изменять количество и ширину интервалов в соответствии с текущими потребностями.

Методика построения :

1. Полученные данные сведите в один документ в удобном для дальнейшей обработки виде (например, в виде таблицы).

2. Вычислите диапазон значений показателя (выборочный размах) по формуле:

где x max – наибольшее полученное значение,

x min – наименьшее полученное значении.

3. Определите количество интервалов гистограммы.

Для этого можно воспользоваться таблицей, рассчитанной на основе формулы Стерджесса:

Можно также воспользоваться таблицей, рассчитанной на основе формулы:

4. Определите ширину (размер) интервалов по формуле:

5. Округлите полученный результат в большую сторону до удобного значения.

Обратите внимание, что вся выборка должна быть разделена на интервалы одинакового размера.

6. Определите границы интервалов. Сначала определите нижнюю границу первого интервала таким образом, чтобы она была меньше x min . К ней прибавьте ширину интервала, чтобы получить границу между первым и вторым интервалами. Далее продолжайте прибавлять ширину интервала (Н ) к предыдущему значению для получения второй границы, затем третьей и т. д.

После произведенных действий следует удостовериться, что верхняя граница последнего интервала больше x max .

7. Для выбранных интервалов подсчитайте частоты попадания значений исследуемого показателя в каждый интервал.

Если значение показателя точно соответствует границе интервала, то добавьте по половинке обоим интервалам, на границу которых попало значение показателя.

8. Вычислите среднее значение исследуемого показателя по формуле:

Следуйте порядку построения гистограммы, начиная с п.5, приведенной выше методики для I варианта .

Анализ гистограммы также разбивается на 2 варианта, в зависимости от наличия технологического допуска.

I вариант Допуски для показателя не заданы. В этом случае производим анализ формы гистограммы:

Обычная (симметричная, колоколообразная) форма. Среднее значение гистограммы соответствует середине размаха данных. Максимальная частота также приходится на середину и постепенно уменьшается к обоим концам. Форма симметричная.

Такая форма гистограммы встречается наиболее часто. Она свидетельствует о стабильности процесса.

Отрицательно скошенное распределение (положительно скошенное распределение). Среднее значение гистограммы располагается правее (левее) середины размаха данных. Частоты резко уменьшаются при движении от центра гистограммы вправо (влево) и медленно влево (вправо). Форма ассиметричная.

Такая форма образуется либо, если верхняя (нижняя) граница регулируется теоретически или по значению допуска либо, если правое (левое) значение невозможно достигнуть.

Распределение с обрывом справа (распределение с обрывом слева). Среднее значение гистограммы располагается далеко правее (левее) середины размаха данных. Частоты очень резко уменьшаются при движении от центра гистограммы вправо (влево) и медленно влево (вправо). Форма ассиметричная.

Такая форма часто встречается в ситуации 100 %-го контроля изделий по причине плохой воспроизводимости процесса.

Гребенка (мультимодальный тип). Интервалы через один или два обладают более низкими (высокими) частотами.

Такая форма образуется либо, если количество единичных наблюдений, входящих в интервал, колеблется от интервала к интервалу либо, если применяется определенное правило округления данных.

Гистограмма, не имеющая высокой центральной части (плато). Частоты в середине гистограммы примерно одинаковые (для плато все частоты примерно равны).

Такая форма встречается, если объединяется несколько распределений со средними значениями близко расположенными друг к другу. Для дальнейшего анализа рекомендуется применить метод стратификации.

Двухпиковый тип (бимодальный тип). В окрестностях середины гистограммы частота низкая, но с каждой стороны есть по пику частот.

Данная форма встречается, если объединяется два распределения со средними значениями, далеко отстоящими друг от друга. Для дальнейшего анализа рекомендуется применить метод стратификации.

Гистограмма с провалом (с «вырванным зубом»). Форма гистограммы близка к распределению обычного типа, но есть интервал с частотой ниже, чем в обоих соседних интервалах.

Данная форма встречается, если ширина интервала не кратна единице измерения, если неправильно считаны показания шкалы и др.

Распределение с изолированным пиком. Совместно с обычной формой гистограммы появляется небольшой изолированный пик.

Такая форма образуется при включении небольшого количества данных из другого распределения, например, если нарушена управляемость процесса, произошли ошибки при измерении или произошло включение данных из другого процесса.

II вариант. Для исследуемого показателя существует технологический допуск. В этом случае производится анализ, как формы гистограммы, так и ее расположение по отношению к полю допуска. Возможны варианты:

Гистограмма имеет вид обычного распределения. Среднее значение гистограммы совпадает с центром поля допуска. Ширина гистограммы меньше ширины поля допуска с запасом.

В данной ситуации процесс не нуждается в корректировке.

Гистограмма имеет вид обычного распределения. Среднее значение гистограммы совпадает с центром поля допуска. Ширина гистограммы равна ширине интервала допуска, в связи с чем возникают опасения появления некондиционных деталей как со стороны верхнего, так и со стороны нижнего полей допуска.

В этом случае необходимо либо рассмотреть возможность изменения технологического процесса с целью уменьшения ширины гистограммы (например, увеличение точности оборудования, использование более качественных материалов, изменение условий обработки изделий и т.д.) либо расширить поле допуска, т.к. требования к качеству деталей в данном случае трудновыполнимы.

Гистограмма имеет вид обычного распределения. Среднее значение гистограммы совпадает с центром поля допуска. Ширина гистограммы больше ширины интервала допуска, в связи с чем обнаруживаются некондиционные детали как со стороны верхнего, так и со стороны нижнего полей допуска.

В этом случае необходимо реализовать меры, описанные в пункте 2.

Гистограмма имеет вид обычного распределения. Ширина гистограммы меньше ширины поля допуска с запасом. Среднее значение гистограммы сдвинуто влево (вправо) относительно центра интервала допуска, в связи с чем имеются опасения, что могут находится некондиционные детали со стороны нижней (верхней) границы поля допуска.

В данной ситуации необходимо проверить, не вносят ли систематическую ошибку применяемые средства измерения. Если средства измерения исправны, следует отрегулировать процесс таким образом, чтобы центр гистограммы совпал с центром поля допуска.

Гистограмма имеет вид обычного распределения. Ширина гистограммы примерно равна ширине поля допуска. Среднее значение гистограммы сдвинуто влево (вправо) относительно центра интервала допуска, причем один или несколько интервалов выходят за границу поля допуска, что свидетельствует о наличии дефектных деталей.

В этом случае первоначально необходимо отрегулировать технологические операции таким образом, чтобы центр гистограммы совпадал с центром поля допуска. После этого нужно принять меры для уменьшения размаха гистограммы или увеличения размера интервала допуска.

Центр гистограммы смещен к верхнему (нижнему) пределу допуска, причем правая (левая) сторона гистограммы рядом с верхней (нижней) границей допуска имеет резкий обрыв.

В этом случае можно сделать вывод, что изделия со значением показателя, выходящим за пределы поля допуска, исключили из партии или умышленно распределили как годные, для включения в пределы допуска. Следовательно, необходимо выявить причину, которая привела к появлению данного явления.

Центр гистограммы смещен к верхнему (нижнему) пределу допуска, причем правая (левая) сторона гистограммы рядом с верхней (нижней) границей допуска имеет резкий обрыв. Кроме того один или несколько интервалов выходят за границы поля допуска.

Случай аналогичен 6., но интервалы гистограммы, выходящие за границы поля допуска указывают на то, что измерительное средство было неисправно. В связи с эти необходимо провести поверку средств измерения, а также провести повторный инструктаж работникам по правилам выполнения измерений.

Гистограмма имеет два пика, хотя измерение значений показателя проводилось у изделий из одной партии.

В этом случае можно сделать вывод, что изделия были получены в разных условиях (например, использовались материалы разных сортов, изменялась настройка оборудования, изделия производились на разных станках и т.д.). В связи с этим для дальнейшего анализа рекомендуется применить метод стратификации.

Основные характеристики гистограммы в порядке (соответствуют случаю 1.), при этом имеются дефектные изделия со значениями показателя, выходящими за пределы поля допуска, которые образуют обособленный «островок» (изолированный пик).

Данная ситуация могла возникнуть в результате небрежности, при которой дефектные детали были перемешаны с доброкачественными. В этом случае необходимо выявить причины и обстоятельства, приводящие к возникновению данной ситуации, а также принять меры к их устранению.

Семь простейших инструментов контроля качества продукции

На рисунке 8 представлены семь простейших статистических методов контроля качества.

Рисунок 8 – Семь простейших статистических методов

2.1.1 Контрольный листок

Какая бы задача не стояла перед системой, всегда начинают со сбора исходных количественных данных, на базе которых затем применяют тот или иной инструмент.

Контрольный листок – инструмент для сбора данных, средство регистрации и автоматического их упорядочивания для облегчения дальнейшего использования информации.

Контрольный листок – бумажный бланк, на котором заранее напечатаны контролируемые параметры, соответственно которым можно заносить данные с помощью пометок или простых символов, предназначен для регистрации возникающих событий, т.е. для сбора данных для последующего анализа. Внешне контрольный листок представляет собой таблицу, заполнение которой сводится к простому добавлению в соответствующую ячейку вертикального штриха при наступлении того или иного события. Первые четыре события отмечаются вертикальными штрихами, а каждое пятое – горизонтальной чертой, пересекающей первые четыре штриха. Таким образом, каждая черточка обозначает 5 событий.

Заполнение контрольного листка – это наиболее простой из инструментов качества – нет ничего проще, чем поставить штрих в нужной ячейке. Подсчет результатов также осуществляется довольно легко.

Ниже приведен пример листа сбора данных, в котором регистрировались жалобы покупателей продукции на отдельные виды несоответствий в разные дни недели (рисунок 9).

Рисунок 9 – Лист сбора данных

Карта статистического управления процессом, или контрольная карта, является графическим представлением данных из выборки, которые периодически берутся из процесса и наносятся на график в соответствии со временем. Кроме того, на контрольных картах отмечаются «контрольные границы», которые описывают присущую изменчивость устойчивого процесса. Целью контрольной карты является помощь в оценке стабильности процесса на основе изучения и нанесения на график данных с учетом контрольных границ. Любая переменная (измеренные данные) или признак (расчетные данные), представляющие изучаемую характеристику продукции или процесса, могут быть нанесены на график.

В качестве примера можно привести контрольный листок, применяемый для фиксирования брака в деталях (рисунок 10).

Рисунок 10 – Контрольный листок

При составлении контрольных листков следует обратить внимание на то, чтобы было указано, на каком этапе процесса и в течение какого времени собирались данные, а также чтобы форма листка была простой и понятной без дополнительных пояснений.

2.1.2 Гистограмма

Для наглядного представления тенденции изменения качества деталей применяют графическое изображение статистического материала. Наиболее распространённым графиком, к которым прибегают при анализе распределения случайной величины, является гистограмма.

Гистограмма инструмент, позволяющий зрительно оценить закон распределения статистических данных.

Гистограммы – один из вариантов столбчатой диаграммы, отображающей зависимость частоты попадания параметров качества изделия или процесса в определенный интервал этих значений. На рисунке 11 интервалы попадания отложены на оси «х», а частота попадания на оси «у».

Рисунок 11 – Гистограмма частот интервального ряда расположения

Гистограмма строится следующим образом.

1) Определяется наибольшее значение показателя качества.

2) Определяется наименьшее значение показателя качества.

3) Определяется диапазон гистограммы как разница между наибольшим и наименьшим значением.

4) Определяется число интервалов гистограммы (число интервалов) = Ц (число значений показателей качества).

5) Определяется длина интервала гистограммы = (диапазон гистограммы) / (число интервалов).

6) Разбивается диапазон гистограммы на интервалы.

7) Подсчитывается число попаданий результатов в каждый интервал.

8) Определяется частота попаданий в интервал = (число попаданий) / (общее число показателей качества).

9) Строится столбчатая диаграмма.

По мере роста числа измерений уменьшается ширина столбцов и полигон превращается в кривую плотности вероятностей, представляющую собой кривую теоретического распределения.

Чтобы оценить адекватность процесса требованиям потребителя, мы должны сравнить качество процесса с полем допуска, установленным пользователем. Если имеется допуск, то на гистограмму наносят верхнюю (S u ) и нижнюю (S L ) его границы, перпендикулярные оси абсцисс (рисунок 12). Тогда можно увидеть, хорошо ли располагается гистограмма внутри этих границ.

Рисунок 12 – К понятию годности при выборке
трёхсигмовых пределов

Если гистограмма имеет симметричный (колокообразный) вид, когда среднее значение приходится на середину размаха данных, то это нормальный (гауссовский) закон распределения случайной величины. Для нормального закона распределения становится возможным исследовать воспроизводимость процесса, неизменность основных параметров процесса: среднего значения x или математического ожидания М(x ) и стандартного отклонения во времени. При этом можно определить выход распределения генеральной совокупности при заданных значениях М(x ), исходя из сравнения соответствующих трёхсигмовых пределов и пределов поля допуска.

Из рисунка 12 видно, что если брать в качестве границ допуска трёхсигмовые пределы (σ – среднеквадратическое отклонение), то годными будут считаться 99,73 % всех данных генеральной совокупности и только 0,27 % данных будут считаться несоответствующими (non-conformity – NC) требованиям потребителя (пользователя), так как они расположены за границами заданного поля допуска.

2.1.3 Диаграммы разброса

Диаграммы разброса представляют собой графики, которые позволяют выявить корреляцию между двумя различными факторами (рисунок 13).

Рисунок 13 – Диаграмма разброса

Диаграмма разброса, которую также называют полем корреляции, – это инструмент, позволяющий определить вид и тесноту связи между парами соответствующих переменных.

Эти две переменные могут относиться:

    к характеристике качества и влияющему на нее фактору;

    к двум различным характеристикам качества;

    к двум факторам, влияющим на одну характеристику качества. Например, температура и давление в печи.

Для выявления связи между ними и служит диаграмма разброса.

Построение диаграммы разброса выполняется в следующей последовательности.

1) Собираются парные данные (x , y ), между которыми хотят исследовать зависимость, и располагаются в таблицу. Если одна переменная – фактор, а вторая – характеристика качества, то выбирается для фактора горизонтальная ось x , а для характеристики качества – вертикальная ось y . Желательно не менее 25–30 пар данных.

2) Находится максимальное и минимальное значение для x и y .

3) На отдельном листке бумаги чертится график и наносятся данные. Если в разных наблюдениях получаются одинаковые значения, то их обозначают концентрическими кружками.

4) Обозначается:

    название диаграммы;

    интервал времени;

    число пар данных;

    названия и единицы измерения для каждой оси.

Использование диаграммы разбросане ограничивается только выявлением вида и тесноты связи между парами переменных. Диаграмма разброса используется также для выявления причинно-следственных связей показателей качества и влияющих факторов при анализе
причинно-следственной диаграммы, которая будет рассмотрена ниже.

Диаграмма разброса позволяет наглядно показать характер изменения параметра качества во времени. Для этого проведём из начала координат биссектрису. Если все точки легли на биссектрису, то это означает, что значение данного параметра не изменилось в процессе эксперимента. Следовательно, рассматриваемый фактор (или факторы) не влияет на параметр качества. Если основная масса точек лежит под биссектрисой, то это значит, что значения параметра качества за прошедшее время уменьшилось. Если же точки ложатся выше биссектрисы, то значения параметра за рассматриваемое время возросли.

Проведя лучи из начала координат, соответствующие уменьшению и увеличению параметра на 10, 14, 30, 50 %, можно путём подсчёта точек между прямыми выяснить частоту значений параметра в интервалах 0...10 %, 10…20 %.

Наибольшее распространение получило применение диаграмм разброса для определения вида связей, общее распределение пар. Для этого сначала следует выяснить, есть ли на диаграмме какие-нибудь далеко отстоящие точки (выбросы), которые обусловлены некоторыми изменениями в условиях работы. следует обратить внимание на причины таких нерегулярностей, поскольку, отыскивая их причину, мы часто получаем информацию о качестве.

2.1.4 Метод стратификации (расслаивание данных)

В соответствии с методом стратификации данных (рисунок 14) производят расслаивание статистических данных, т.е. группируют данные в зависимости от условий их получения и производят обработку каждой группы данных в отдельности.

Данные, разделённые на группы в соответствии с их особенностями, называют слоями (стратами), а сам процесс разделения на слои (страты) – расслаиванием (стратификацией).

Существуют различные методы расслаивания, применение ко-торых зависит от конкретных задач. Например, данные, относящиеся
к изделию, производимому в цехе на рабочем месте, могут в какой-то мере различаться в зависимости от исполнителя, используемого обо-рудования, методов проведения рабочих операций, температурных
условий и т.д. Все эти отличия могут быть факторами расслаивания. В производственных процессах часто используется метод 5М, учитывающий факторы, зависящие от человека (man), машины (machine), материала (material), метода (method), измерения (measurement).

Рисунок 14 – Стратификация данных

Расслаивание осуществляется следующим образом:

    расслаивание по исполнителям – по квалификации, полу, стажу работы;

    расслаивание по материалу – по месту производства, фирме – производителю, партии, качеству сырья и т.д.;

    расслаивание по машинам и оборудованию – по новому и старому оборудованию, марке, конструкции, выпускающей фирме и т.д.;

    расслаивание по способу производства – по температуре, технологическому приёму, месту производства и т.д.;

    расслаивание по измерению – по месту измерения, типу измерительных средств или их точности и т.д.

В результате расслаивания обязательно должны соблюдатьсяследующие два условия.

1) Различия между значениями случайной величины внутри слоя (дисперсия) должны быть как можно меньше по сравнению с различием её значений в нерасслоённой исходной совокупности.

2) Различие между слоями (различия между средними значениями случайных величин слоёв) должно быть как можно больше.

При контроле качества изготовления продукции часто на практике возникает задача выявления предполагаемого источника ухудшения качества выпускаемой продукции; такую информацию возможно получить путём расслаивания дисперсии с помощью дисперсионного ана-лиза.

2.1.5 Диаграмма Исикавы

Диаграмма Исикавы (причинно-следственная диаграмма) позволяет формализовать и структурировать причины возникновения того или иного события, например, – появления несоответствия, а также устанавливать причинно-следственные связи.

Все возможные причины классифицируются по принципу 5М:

1. Man (Человек) – причины, связанные с человеческим фактором;

2. Machines (Машины, оборудование) – причины, связанные с оборудованием;

3. Materials (Материалы) – причины, связанные с материалами;

4. Methods (Методы) – причины, связанные с технологией работы, с организацией процессов;

5. Measurements (Измерения) – причины, связанные с методами измерения.

Исследуемое событие изображается в правой части схемы, символизируя корень древовидной диаграммы, которая строится справа от обозначения события. Горизонтально, от корня диаграммы до левого края листа, наносится центральная ось диаграммы, похожая на ствол дерева.

К центральной оси диаграммы Исикавы примыкают пять ветвей, каждая из которых соответствует своему классу причин, или своему М.

Далее, на каждой ветви отдельно, как на оси, строятся дополнительные веточки, каждая из которых представляет отдельную причину в своем классе. К каждой такой веточке, в свою очередь, подводятся побеги-причины более высокого уровня, детализирующие ее. Продолжая таким образом, мы получаем разветвленное дерево, связывающее причины наступления того или иного события, находящиеся на разном уровне детализации. Таким образом, мы можем установить причинно-следственную связь между частными отклонениями от нормы (первичными причинами) и их влиянием на вероятность наступления конкретного события.

Для эффективности применения данного метода и достоверности полученных результатов построение диаграммы Исикава должны выполнять профессионалы.

Из-за своей структуры диаграмма Исикавы также носит название «рыбья кость» (рисунок 15).

Рисунок 15 – Диаграммы Исикавы

2.1.6 Диаграмма Парето

Диаграмма Парето, или ABC-анализ, позволяет выявить основные причины, оказывающие наибольшее влияние на возникновение той
или иной ситуации. Принцип Парето гласит, что 20 % причин порождает 80 % следствий. Другими словами, из всех возможных причин всего лишь 20% являются особенно значимыми, так как они влияют на результаты, которые составляют 80 % от всего количества.

Принцип Парето еще носит название Правило 20-80. Этот принцип назван так в честь итальянского экономиста Вильфредо Парето, который в конце XIX века обратил внимание на тот факт, что 80 % итальянского капитала сосредоточено в руках 20 % населения Италии. Позднее справедливость этого правила была подтверждена наблюдениями и последующими подсчетами результатов в различных отраслях жизни. Так, устранение 20 % из общего числа возникающих несоответствий отвлекает на себя 80 % от общей суммы затрат на устранение всех возможных несоответствий; для компании-поставщика 20 % из общего числа заказчиков формируют 80 % прибыли и т.д. Таким образом, сосредоточив свое воздействие на 20 % причин, мы оказываем влияние на 80 % последствий. Следующие 30 % причин порождают, как ни странно, только 15 % следствий и, наконец, оставшиеся 50 % влияют всего лишь на 5 % следствий. Таким образом, мы можем
распределять свое внимание и воздействие, исходя из значимости и эффективности результатов.

Например, если взять произвольный текст и посчитать, сколько раз в нем встречается каждая буква, то с большой долей вероятности окажется, что буквы, составляющие 20 % алфавита, образуют около
80 % всего текста.

Пример диаграммы Парето приведён на рисунке 16.

Рисунок 16 – Диаграмма Парето

2.1.7 Диаграмма корреляции

Диаграмма корреляции (диаграмма рассеивания) – графическое отображение отношения между переменными величинами, связанными между собой. Эта диаграмма призвана обнаружить принцип, по которому изменяется условно зависимая переменная величина при изменении значения независимой переменной.

Например, на рисунке 17 показано, как изменяется объем продажи газированных напитков при изменении погодных условий. Налицо сильная положительная корреляция.

ных напит-ков, шт.


Рисунок 17 – Диаграмма рассеивания

2.1.8 Контрольные карты

Применение контрольных карт используется в планировании, конструировании, определении изменений процесса, а также измерении эффекта определенного внешнего вмешательства или действия (рисунок 18).

Кроме того, анализ временных рядов по контрольным картам полезен для сравнения получаемых результатов в случае проведения улучшений и изменений.

Рисунок 18 – Контрольные карты

Контрольная карта – это график с ограничительными линиями, показывающими приемлемый предел качественного производства. Он очень помогает для обнаружения ненормальных ситуаций в стандартных производственных процессах.

Контрольные карты – специальный вид диаграммы, впервые предложенный Шухартом в 1925 г. Они имеют вид, представленный на рисунке 18. Контрольные карты используются для отображения во времени (слева направо) наблюдаемого результата или состояния процесса относительно среднего уровня или между верхним и нижним пределами.

Типы контрольных карт

Существует два типа контрольных карт: один предназначен для контроля параметров качества, значения которых являются количественными данными параметра качества (значения размеров, масса, электрические и механические параметры и т.п.), а второй – для контроля параметров качества, представляющих собой дискретные случайные величины и значения, которые являются качественными данными (годен – не годен, соответствует – не соответствует, дефектное – бездефектное изделие и т. п.) (рисунок 19).



Рисунок 19 – Порядок выбора типа контрольной карты
(n – объём выборки)
Контрольные карты по качественным признакам

В карте для доли дефектных изделий (p -карта) подсчитывается доля дефектных изделий в выборке. Она применяется, когда объем выборки переменный.

В карте для числа дефектных изделий (np -карта) подсчитывается число дефектных изделий в выборке. Она применяется, когда объем выборки постоянный.

В карте для числа дефектов в выборке (с -карта) подсчитывается число дефектов в выборке.

В карте для числа дефектов на одно изделие (u -карта) подсчитывается число дефектов на одно изделие в выборке.

Контрольные карты по количественным признакам

Контрольные карты по количественным признакам – это, как правило, сдвоенные карты, одна из которых изображает изменение среднего значения процесса, а 2-я – разброса процесса. Разброс может вычисляться на основе размаха процесса R (разницы между наибольшим и наименьшим значением), контрольных карт, а именно, контрольные карты:

– средних арифметических и размахов (х R );

– медиан и размахов (Ме – R );

– индивидуальных значений (х );

– доли дефектной продукции (р );

– числа дефективных единиц продукции (рn );

– числа дефектов (c );

– числа дефектов на единицу продукции (u ).

В любом производственном процессе всегда имеют место изменения, или вариации, проявляющиеся в отклонении от номинальных значений каких-то параметров, характеризующих этот процесс. Под стабильностью в статистическом смысле понимают процесс, когда среднее значение наблюдаемого параметра со временем не отклоняется от номинального значения, а величина разброса параметра укладывается в заданный интервал. Однако вариации могут вызываться и причинами неслучайного характера. К подобным причинам можно отнести, например, неправильную настройку станка, его износ, неправильное выполнение оператора рабочих инструкций из-за усталости или недомогания, ошибки компьютера и т.п. При наличии таких причин производственный процесс выходит из-под статистического контроля.

Основная цель контрольных карт – быстро обнаружить неслучайные изменения производственного процесса, с тем чтобы выявить причину изменения и внести необходимые корректировки в процесс, прежде чем будет выпущено большое количество некачественной продукции. Кроме того, контрольные карты позволяют оценить параметры, характеризующие качество и потенциальные возможности процесса.

Таким образом, если процесс статистически контролируем, то почти все значения наблюдаемого параметра (П) укладываются в ограниченную зону. При этом никаких корректирующих действий не требуется. Попадание значений наблюдаемого параметра за пределы допустимой зоны свидетельствует о том, что процесс стал статистически неконтролируемым. Следует отметить, что возможны ситуации, когда значения контролируемого параметра укладываются в допустимую зону, но все десять последних точек попали в область ниже центральной линии (рисунок 20). В этом случае нарушился фактор «случайности» и появился фактор «закономерности», т.е. процесс стал статистически не контролируемым.

Рисунок 20 – Примеры появления фактора закономерности
на контрольной карте

В процессе изготовления изделие подвержено комплексному влиянию названных причин.

Для оценки качества изделия, т.е. степени соответствия его параметров (характеристик) требуемым значениям, назначаются допустимые области изменения этих характеристик, при этом с учетом перечисленных выше причин возможные отклонения объединяются в две группы: случайные и систематические.

Случайные отклонения обусловливаются самим процессом производства и в основном неустранимы. Возникают они вследствие комплексного взаимодействия разных причин, таких как вибрация, биение подшипников и влияют, как правило, на разбросы контролируемых
характеристик.

На рисунке 21а изображены два графика плотности распределения признака качества х для двух способов изготовления одного и того же изделия. Распределение является нормальным и имеет при обоих способах изготовления одно и то же математическое ожидание m х , то есть значения признака качества в обоих случаях совпадают в среднем. Оба способа различаются только степенью рассеяния. Если требуется, чтобы значения признаков качества лежали внутри допустимой области со средним значением m х в диапазоне [a , b ], то при втором способе изготовления возможен больший процент брака (на рисунке вероятность его появления показана штриховкой).

Систематические отклонения обусловливаются такими причинами, как износ инструмента, смена партии исходного сырья, новая рабочая смена. Систематические причины приводят к смещению центра рассеяния контролируемой характеристики, как это показано на
рисунке 21б. Появление систематических отклонений также приводит к увеличению брака, однако причины таких отклонений могут быть выявлены и устранены.

а – случайные; б – систематические

Рисунок 21 – Виды отклонений

Функциональным назначением производственного контроля качества является оценка соответствия изготавливаемой продукции требуемым характеристикам путем сравнения характеристик изготовленной продукции с допусками на эти характеристики, заданными в документации на изготовление этой продукции, и выявление причин отклоне-ний.

Различают три вида производственного контроля качества: входной контроль материалов, сырья и комплектующих, контроль производственного процесса и контроль изготовленной продукции.

Входной контроль обеспечивает качество исходного сырья и материалов.

Контроль производственного процесса – это совокупность всех контрольных операций, проводимых во время процесса изготовления и позволяющих на основании информации о состоянии процесса управлять им так, чтобы признак качества производимых изделий оставался в рамках заданных допусков.

Контроль готовой продукции является приемочным контролем, который должен обеспечить долю годных изделий в поставляемой продукции не ниже уровня, заданного заказчиком.

Таким образом, контроль производства обеспечивает качество изготавливаемых изделий, а приемочный контроль – качество поставляемых заказчику изделий.

Поскольку любой контроль требует определенных стоимостных затрат, то изготовитель при разработке системы управления качеством должен правильно соотнести объемы этих двух видов контроля, оптимизируя функцию суммарных затрат на контроль с учетом стоимости рисков как поставщика, так и заказчика.

Контроль качества может проводиться как по количественным, так и по качественным признакам.

Количественные признаки

Многие характеристики, определяющие качество изделия, можно измерить. К таким характеристикам относятся, например, диаметр снаряда, прочность на разрыв нити, химический состав стали и др. Обычно количественные признаки изделия являются непрерывными случайными величинами. Часто это распределение является нормальным или логарифмически нормальным. Иногда количественные признаки бывают дискретными случайными величинами. Примерами могут служить число ниток в куске материи или число дефектов на поверхности метал-лического диска. Если производственный процесс контролируется,
то распределение дефектных дисков может подчиняться закону
Пуассона.

Качественные признаки

Обычно изделие классифицируется либо как годное (хорошее), либо как негодное (дефектное, брак). Например зажигалка, которая не загорается, является дефектной. Иногда дефекты распределяются на значительные и незначительные. Так отсутствие винта в лодочном моторе является значительным дефектом и приводит к забраковке мотора, тогда как царапины на окраске мотора будут отнесены к незначительным дефектам.

Контроль изделий по количественным признакам позволяет также классифицировать изделия и качественно: «годен – не годен». В случае приемочного контроля изделий по результатам выборочной оценки для описания распределения качественных признаков используются часто такие виды распределений, как биномиальное, геометрическое, гипергеометрическое.


Документ

Системы управления качеством продукции Информационное обеспечение системы управления качеством продукции Принципы управления качеством продукции Единство количества и качества продукции Эффективность качества Повышение уровня качества ...

  • инструменты контроля качества;
  • инструменты управления качеством;
  • инструменты анализа качества;
  • инструменты проектирования качества.

– речь здесь идет об инструментах контроля, которые позволяют принимать управленческие решения, а не о технических средствах контроля. Большинство инструментов, применяемых для контроля, основаны на методах математической статистики. Современные статистические методы и математический аппарат, применяемый в этих методах, требуют от сотрудников организации хорошей подготовки, что далеко не каждая организация может обеспечить. Однако без контроля качества невозможно управлять качеством и тем более повышать качество.

Из всего разнообразия статистических методов для контроля наиболее часто применяют самые простые статистические инструменты качества. Их еще называют семь инструментов качества или семь инструментов контроля качества. Эти инструменты были отобраны из множества статистических методов союзом японских ученых и инженеров (JUSE) . Особенность этих инструментов заключается в их простоте, наглядности и доступности для понимания получаемых результатов.

Инструменты контроля качества включают в себя – гистограмму , диаграмму Парето , контрольную карту , диаграмму разброса , стратификацию , контрольный листок , диаграмму Исикавы (Ишикавы).

Для применения этих инструментов не требуется глубокое знание математической статистики, а потому сотрудники легко осваивают инструменты контроля качества в ходе непродолжительного и простого обучения.

Далеко не всегда информация, характеризующая объект может быть представлена в виде параметров, имеющих количественные показатели. В таком случае для анализа объекта и принятия управленческих решений приходится использовать качественные показатели.

Инструменты управления качеством – это методы, которые в основе своей используют качественные показатели об объекте (продукции, процессе, системе). Они позволяют упорядочить такую информацию, структурировать ее в соответствии с некоторыми логическими правилами и применять для принятия обоснованных управленческих решений. Наиболее часто инструменты управления качеством находят применение при решении проблем, возникающих на этапе проектирования, хотя могут применяться и на других этапах жизненного цикла.

Инструменты управления качеством содержат такие методы как диаграмма сродства , диаграмма связей , древовидная диаграмма , матричная диаграмма , сетевой график (диаграмма Ганта) , диаграмма принятия решений (PDPC) , матрица приоритетов . Также эти инструменты называют – семь новых инструментов контроля качества. Эти инструменты качества были разработаны союзом японских ученых и инженеров в 1979 г. Все они имеют графическое представление и потому легко воспринимаемы и понятны.

Инструменты анализа качества – это группа методов, применяемая в менеджменте качества для оптимизации и улучшения продукции, процессов, систем. Наиболее известные и часто используемые инструменты анализа качества – функционально-физический анализ, функционально-стоимостной анализ, анализ причин и последствий отказов (FMEA -анализ). Эти инструменты качества требуют от сотрудников организации большей подготовки, чем инструменты контроля и управления качеством. Часть инструментов анализа качества оформлены в виде стандартов и являются обязательными для применения в некоторых отраслях промышленности (в том случае, если организация внедряет систему качества).

Инструменты проектирования качества – это сравнительно новая группа методов, применяемая в менеджменте качества с целью создания продукции и процессов, максимально реализующих ценность для потребителя. Из названия этих инструментов качества видно, что применяются они на этапе проектирования. Некоторые из них требуют глубокой инженерной и математической подготовки, некоторые могут быть освоены за достаточно короткий период времени. К инструментам проектирования качества относятся, например – развертывание функций качества (QFD) , теория решения изобретательских задач, бенчмаркинг , метод эвристических приемов.

Японский союз инженеров и ученых выделил семь основных инструментов оперативного управления (обеспечения) качеством (рис. 2.38):

  • 1) диаграмма сродства (affinity diagram);
  • 2) диаграмма связей (interrelationship diagram);
  • 3) древовидная диаграмма (tree diagram);
  • 4) матричная диаграмма, или таблица качества (matrix diagram or quality table);
  • 5) стрелочная диаграмма (arrow diagram);

Рис. 2.38.

  • 6) диаграмма процесса осуществления программы PDPC (process decision program chart - диаграмма процесса осуществления программы);
  • 7) матрица приоритетов (анализ матричных данных) (matrix data analysis ).

Иногда эти семь инструментов называют новыми инструментами управления качеством - N1 . Эти инструменты применяются в оперативном управлении качеством проекта и носят общий характер. В стратегическом плане их можно рассматривать как семь стратегических методов управления качеством - S7. К ним относятся:

  • 1) оценка привлекательности бизнеса;
  • 2) бенчмаркинг;
  • 3) анализ сегментирования рынка;
  • 4) оценка рыночной позиции;
  • 5) управление портфелем проектов;
  • 6) стратегический анализ факторов развития;
  • 7) оптимизация ресурсов.

В стратегическом аспекте TQM становится концепцией управления предприятием, определяющей текущую эффективность бизнеса и перспективы его развития.

Схема совместного использования инструментов качества показана на рис. 2.39. На этапе предварительного анализа и определения проблемы используются такие инструменты управления качеством, как диаграмма сродства и диаграмма связей; на этапе развертывания средств - матричная диаграмма и древовидная диаграмма; на этапе систематизации средств - стрелочная диаграмма и диаграмма процесса. Завершающей является матрица приоритетов, которая позволяет выявить приоритетные сегменты рынка, которыми будет воспринят усовершенствованный продукт. Показаны возможности подключения существующих инструментов контроля качества в необходимых случаях и потенциальных инструментов для сложных ситуаций в виде многовариантного анализа при необходимости.

Рассмотрим практическое решение проблемы увеличения гарантийного срока службы изделия (настольной мельницы), для которой был построен «дом качества» (см. рис. 2.16).

Диаграмма сродства является средством структурирования большого количества разнообразных данных по рассматриваемой проблеме по принципу сродства различных данных и иллюстрирует скорее ассоциативные, чем логические, связи. Этот инструмент


Рис. 2.39. Совместное использование инструментов качества иногда называют методом KJ. Этот метод возник из раннего опыта работы японского ученого Джиро Кавакиты в 1950-х гг. Методы, разработанные тогда для сбора и анализа данных, вылились в подход решения проблемы, обозначенный его инициалами. В 1967 г. Кавакита описал свой метод и разработал обучающую систему. Информация часто поступает как языковые данные из нескольких источников: отклики клиентов на обзоры, расшифрованные записи о посещении клиентов или TQM, или синтезированные результаты множественных АУ-диаграмм. Любые из них могут привести к десяткам и сотням утверждений. Многоотборочный метод МРМ есть методология для просеивания этих утверждений до управляемого количества. Кавакита создал этот метод вместе с А/-методом. Подобно последнему, МРМ использует факты или идеи. Существует два принципа уменьшения количества данных: 1) усиление сильных и 2) устранение слабых сторон. МРМ следует первому принципу - сосредоточиться на важности данных, имеющих отношение к теме. Идея МРМ имеет некоторое сходство с теорией У. Макгрегора.

Создавать диаграмму сродства предпочтительнее группой. Опыт показывает, что для этой цели лучше создавать группу, состоящую из 6-8 человек, имеющих предварительный опыт совместной работы. Процедура создания диаграммы может быть организована следующим образом. Сначала определяют предмет (тему), являющийся основой для сбора данных. Метод МРМ реализуется за несколько стадий:

  • подготовка, которая включает разминку и обсуждение темы;
  • сбор данных по теме, используя метод «мозгового штурма». Члены команды маркируют утверждения, которые будут вероятными при окончательном рассмотрении. Каждый участник группы отмечает все, что кажется ему важным. Неотмеченные утверждения не обсуждаются. Существуют несколько попыток отбора с постепенным уменьшением выбора. Постоянно проверяя список утверждений и маркируя их, члены команды достигают согласия о самых важных, не затрачивая времени на обсуждение;
  • фокусированный отбор - от 20 до 30% предыдущего материала выбрасывается из окончательного отбора. Каждый участник имеет ограниченный выбор для обозначения окончательных выводов. К этому времени каждый уже рассмотрел оставшиеся утверждения по нескольку раз, и все готовы сосредоточиться на самых важных.

При построении диаграммы МРМ и диаграммы сродства широко используются такие инструменты контроля качества, как карты контроля, диаграммы разброса, диаграммы стратификации и диаграммы Парето. На рис. 2.40 показана диаграмма МРМ применительно к рассматриваемой проблеме повышения срока службы изделия (увеличения долговечности).

Ограничение исходных данных показало, что существует неудовлетворенность потребителей гарантированным сроком службы изделий (1 год). Это связано с частыми ремонтами для восстановления работоспособности изделия. В то же время функциональные возможности качественно изготовленных образцов в целом определяют рыночную привлекательность изделия. Данные результаты подтверждаются изделиями, которые длительное время работают без дополнительных ремонтов. Конкретизирована сущность проблемы: повысить гарантийный срок службы до четырех лет, чтобы обеспечить стабильную долговечность и тем самым удовлетворенность потребителей.

Для построения диаграммы сродства родственные данные группируют по направлениям различных уровней. Работа считается законченной, когда все данные приведены в порядок, т.е. собраны


Рис. 2. 40. Диаграмма МРМ

в предварительные группы родственных данных, а большинство разногласий разрешены. Оставшиеся вопросы обычно снимаются во время дискуссии.

Сначала нужно попытаться определить направленность каждой группы данных по признаку сродства данных группы. Это можно сделать иначе: выбрать одну карточку из группы, установить ее во главе или сформировать новое направление. Эту процедуру можно повторять для обобщения ведущих направлений и таким образом создать иерархию. Анализ заканчивают, когда данные сгруппированы по ведущим направлениям. На рис. 2.41 показана диаграммы сродства по проблеме увеличения гарантийного срока службы изделия. Видно, что данные сгруппированы по трем направлениям, каждое из которых содержит предметные утверждения по пробле-


Рис. 2.41. Диаграмма сродства ме. Для этого используется такой инструмент, как диаграмма стратификации.

Инструмент, позволяющий выявить логические связи между основной идеей, проблемой или различными данными . Задачей этого инструмента управления является установление соответствия основных причин нарушения процесса, выявленных с помощью диаграммы сродства, тем проблемам, которые требуют решения (этим объясняется некоторое сходство между диаграммой связей и причинно-следственной диаграммой - диаграммой Исикавы). Классификация этих причин по важности осуществляется с учетом используемых в компании ресурсов, а также числовых данных, характеризующих причины.

Используемые при этом данные могут, например, быть сгенерированы, если применить диаграмму сродства. Диаграмма связей является главным образом логическим инструментом, противопоставленным диаграмме сродства, которая имеет творческое начало. Диаграмма связей может быть полезной в ситуациях:

  • когда предмет (тема) настолько сложен, что связи между различными идеями не могут быть установлены при помощи обычного обсуждения;
  • временная последовательность, согласно которой делаются шаги, является решающей;
  • есть подозрения, что проблема, затронутая в вопросе, является исключительно симптомом более фундаментальной незатронутой проблемы. Так же как и в случае с диаграммой сродства, работу над диаграммой связей должна проводить соответствующая группа. Важным является то, что сначала должен быть определен исследуемый предмет (результат). Основные причины можно определить из диаграммы сродства или используя такой инструмент контроля качества, как диаграмму Исикавы.

На рис. 2.42 показана диаграмма связей при решении проблемы увеличения гарантийного срока службы изделия до четырех лет. Определены основные задачи решаемой проблемы, лица, ответственные за их реализацию, установлены логические связи между ними. Недооценка рыночной важности проблемы сдерживала ее решение. Осознание зависимости предприятия от состояния рыночной конъюнктуры может создавать ему угрозы в будущем. Для понижения степени ее риска пересматривается модель производства. Немаловажным фактором является также необходимость использования обновленной технологической базы, что связано не


Рис. 2.42.

только с приобретением современного оборудования, но и с эффективным его использованием. Персонал для этого должен обладать необходимыми компетенциями. Для гарантирования качества требуется метрологическое обеспечение, которое позволит закрыть вопросы точности контроля.

(систематическая диаграмма) - инструмент, обеспечивающий систематический путь разрешения рассматриваемой проблемы по повышению удовлетворенности потребителей, представленных на различных уровнях.

В отличие от диаграммы сродства и диаграммы связей этот инструмент более целенаправлен. Древовидная диаграмма строится в виде многоступенчатой структуры, элементами которой являются различные средства и способы решения проблемы. Принцип построения древовидной диаграммы приведен на рис. 2.43.

Древовидная диаграмма может быть использована в следующих случаях:

Рис. 2.43.

  • когда неясно сформированные пожелания потребителя в отношении продукта преобразуются в пожелания потребителя на управляемом уровне;
  • необходимо исследовать все возможные аспекты проблемы;
  • краткосрочные цели необходимо достигнуть до завершения всей работы, т.е. на этапе проектирования.

Матричная диаграмма - инструмент, позволяющий установить важность различных связей и являющийся центральным звеном семи инструментов управления домом качества.

Матричная диаграмма позволяет структурировать большое количество данных, так что логические связи между различными элементами получают графическое отображение. Ее цель - изображение контура связей и корреляций между задачами, функциями и характеристиками с выделением их относительной важности. В конечном виде матричная диаграмма показывает соответствие определенных факторов и явлений различным причинам их появления и средствам устранения их последствий, а также степень зависимостей этих факторов от причин их возникновения и мер по их устранению. Матричные диаграммы, называемые еще матрицами связей, приведены на рис. 2.44. В рассматриваемом случае они определяют наличие и тесноту связей факторов Т - технические факторы, Р - рыночные факторы, К - факторы компетентности. Связь между ними показывается с помощью специальных символов:

Сильная связь (определяемая в 9 баллов);

О - средняя связь (определяемая в 3 балла);

Слабая связь (определяемая в 1 балл).

Определяем важность связей основных факторов при решении проблемы повышения гарантийного срока службы производимого изделия (настольной мельницы). Матричная диаграмма состоит из трех линейных (простых) диаграмм, в виде комбинаций факторов: диаграмма а) - комбинация Т и Р; диаграмма б) - комбинация Т и К; диаграмма в) - комбинация К и Р.

Формируем основные факторы, влияющие на процесс улучшения изделия с целью повышения его гарантийного срока службы:

1. Технические факторы в виде множества Т = }