Значение диодов. Применение диодов

Диод - 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью электрического тока: он хорошо пропускает через себя ток в одном направлении и очень плохо - в другом. Это основное свойство диода используется, в частности, для преобразования переменного тока электросети в постоянный ток.

Схематическое устройство диода:

Конструктивно диод представляет собой небольшую пластинку германия или кремния, одна область (часть объема) которой обладает электропроводимостью p-типа, то есть «дырочной» (содержащей искусственно созданный недостаток электронов), другая - электропроводимостью n-типа, то есть электронной (содержащей избыток электронов). Границу между ними называют p-n переходом. Здесь буквы p и n - первые в латинских словах positiv - «положительный», и negativ - «отрицательный». Область p-типа исходного полупроводника такого прибора является анодом (положительным электродом), а область n-типа - катодом (отрицательным электродом) диода.

Принцип работы диода .


Если к диоду VD через лампу накаливания HL подключить батарею GB так, чтобы вывод положительного полюса батареи был соединен с анодом, а вывод отрицательного полюса с катодом диода (рис а), тогда в образовавшейся электрической цепи появится ток, о чем будет сигнализировать загоревшаяся лампа HL. Значение этого тока зависит от сопротивления p-n перехода диода и поданного на него постоянного напряжения. Такое состояние диода называют открытым, ток, текущий через него,- прямым током Iпр, а поданное на него напряжение, благодаря которому диод оказался в открытом состоянии,- прямым напряжением Uпр.

Если полюсы батареи GB поменять местами, как показано на рис. б, то лампа HL не загорится, так как в этом случае диод находится в закрытом состоянии и оказывает току в цепи большое сопротивление. Небольшой ток через p-n переход диода в обратном направлении все же пойдет, но по сравнению с прямым током будет столь незначительным, что нить накала лампы даже не среагирует. Такой ток называют обратным током Iобр, а напряжение, создающее его,- обратным напряжением Uобр.

Можно ли опытным путем проверить эти свойства диода? Конечно, можно. Для этого понадобятся любой плоскостной диод, например из серий Д226, Д202, Д7, миниатюрная лампа накаливания, рассчитанная на ток накала 100...300 мА, например МН 3,5-0,14 (напряжение 3,5 В, ток накала 140 мА), и батарея 3336 (для плоского карманного электрического фонаря) или составленная из трех элементов 343 или 373. Соединять их между собой следует по схемам, приведенным на последнем рисунке. Попеременное изменение полярности включения батареи в цепь будет то открывать, то закрывать диод и тем самым автоматически зажигать и гасить лампу накаливания.

В таком опыте лампа накаливания выполняет двоякую роль: служит индикатором и ограничителем тока в цепи. При непосредственном прямом подключении батареи к диоду ток в цепи может оказаться столь значительным, что p-n переход перегреется и диод выйдет из строя.

Принцип устройства и работы так называемых точечных полупроводниковых диодов, например Д9, Д2, Д220, аналогичен. Площади p-n переходов полупроводниковых диодов в этом случае значительно меньше, чем у плоскостных диодов, поэтому и допустимые токи, текущие через них, меньше.

Главное отличие германиевых диодов от кремниевых в значении прямых напряжений, при которых они открываются и практически не оказывают заметного сопротивления текущим через них токам. Германиевые диоды открываются при прямом напряжении 0,1...0,15 В, а кремниевые - при 0,6...0,7 В.

Ключевую роль в разработке первых отечественных полупроводниковых диодов в 1930-х годах сыграл советский физик Б. М. Вул .

Типы диодов

Специальные типы диодов

  1. первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:
    • Г или 1 - германий или его соединения;
    • К или 2 - кремний или его соединения;
    • А или 3 - соединения галлия (например, арсенид галлия);
    • И или 4 - соединения индия (например, фосфид индия);
  2. второй элемент - буквенный индекс, определяющий подкласс приборов;
    • Д - для обозначения выпрямительных, импульсных , магнито- и термодиодов;
    • Ц - выпрямительных столбов и блоков;
    • В - варикапов ;
    • И - туннельных диодов ;
    • А - сверхвысокочастотных диодов;
    • С - стабилитронов , в том числе стабисторов и ограничителей;
    • Л - излучающие оптоэлектронные приборы;
    • О - оптопары;
    • Н - диодные тиристоры;
  3. третий элемент - цифра (или в случае оптопар - буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);
  4. четвёртый элемент - число, обозначающее порядковый номер разработки технологического типа изделия;
  5. пятый элемент - буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.

Например: КД212Б, ГД508А, КЦ405Ж.

Кроме того, система обозначений предусматривает (в случае необходимости) введение в обозначение дополнительных знаков для выделения отдельных существенных конструктивно-технологических особенностей изделий.

Россия

Продолжает действовать ГОСТ 2.730-73 - приборы полупроводниковые. Условные обозначения графические.

Импортные радиодетали

Существует ряд общих принципов стандартизации системы кодирования для диодов за рубежом - наиболее распространены EIA /JEDEC и европейский Pro Electron стандарты.

EIA/JEDEC

Стандартизированная система EIA370 нумерации 1N-серии была введена в США EIA/JEDEC (Объединенный Инженерный Консилиум по Электронным Устройствам) приблизительно в 1960 году. Среди самого популярного в этой серии были: 1N34A/1N270 (германиевый), 1N914/1N4148 (кремниевый), 1N4001-1N4007 (кремниевый выпрямитель 1A) и 1N54xx (мощный кремниевый выпрямитель 3A) .

Pro Electron

Дополнительные сведения: Pro Electron

Согласно европейской системе обозначений активных компонентов Pro Electron , введенной в 1966 году и состоящей из двух букв и числового кода:

  1. первая буква обозначает материал полупроводника:
    • A - Germanium (германий) или его соединения;
    • B - Silicium (кремний) или его соединения;
  2. вторая буква обозначает подкласс приборов:
    • A - сверхвысокочастотные диоды;
    • B - варикапы ;
    • X - умножители напряжения;
    • Y - выпрямительные диоды;
    • Z - стабилитроны , например:
  • AA-серия - германиевые сверхвысокочастотные диоды (например, AA119);
  • BA-серия - кремниевые сверхвысокочастотные диоды (например: BAT18 - диодный переключатель)
  • BY-серия - кремниевые выпрямительные диоды (например: BY127 - выпрямительный диод 1250V, 1А);
  • BZ-серия - кремниевые стабилитроны (например, BZY88C4V7 - стабилитрон 4,7V).

Другие

Другие распространённые системы нумерации/кодирования (обычно производителем) включают:

  • GD-серия германиевых диодов (например, GD9) - это очень старая система кодирования;
  • OA-серия германиевых диодов (например, OA47) - кодирующие последовательности разработаны британской компанией Mullard.

Система JIS маркирует полупроводниковые диоды, начиная с «1S».

Кроме того, многие производители или организации имеют свои собственные системы общей кодировки, например:

  • HP диод 1901-0044 = JEDEC 1N4148
  • Военный диод CV448 (Великобритания) = Mullard типа OA81 = GEC типа GEX23

Уравнение Шокли для диода

(названо в честь изобретателя транзистора Уильяма Шокли) представляет собой вольт-амперную характеристику идеального диода для прямого и обратного тока. Уравнение Шокли для идеального диода:

I = I S (e V D / (n V T) − 1) , {\displaystyle I=I_{\mathrm {S} }\left(e^{V_{\mathrm {D} }/(nV_{\mathrm {T} })}-1\right),\,} I - ток проходящий через диод, I S - ток насыщения диода, V D - напряжение на диоде, V T - термическое напряжение диода, n - коэффициент идеальности , известный также как коэффициент эмиссии .

Коэффициент идеальности n обычно лежит в пределах от 1 до 2 (хотя в некоторых случаях может быть выше), в зависимости от процесса изготовления и полупроводникового материала. Во многих случаях предполагается, что n примерно равно 1 (таким образом, коэффициент n в формуле опускается). Фактор идеальности не является частью уравнения диода Шокли и был добавлен для учёта несовершенства реальных переходов. Поэтому в предположении n = 1 уравнение сводится к уравнению Шокли для идеального диода.

Термическое напряжение V T приблизительно составляет 25,85 мВ при 300 K (температура, близкая к «комнатной температуре», обычно используемой в программах моделирования). Для конкретной температуры его можно найти по формуле:

V T = k T q , {\displaystyle V_{\mathrm {T} }={\frac {kT}{q}}\,}

где k - постоянная Больцмана , T - абсолютная температура p-n -перехода, и q - элементарный заряд электрона .

Ток насыщения, I S , не является постоянным для каждого диода, но зависит от температуры значительно больше V T . Напряжение V D обычно уменьшается при увеличении T .

Уравнение Шокли для идеального диода (или закон диода ) получено с допущением, что единственными процессами, вызывающими ток в диоде, является дрейф (под действием электрического тока), диффузия и термическая рекомбинация. Оно также полагает, что ток в p-n -области, вызванный термической рекомбинацией, незначителен.

Применение диодов

Диодные выпрямители

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (то есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) - основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах , он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию - пробою.

В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.

Если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.

Диодные детекторы

Диодная защита

Диоды применяются для защиты устройств от неправильной полярности включения, защиты входов схем от перегрузки, защиты ключей от пробоя ЭДС самоиндукции , возникающей при выключении индуктивной нагрузки и т. п.

Для защиты входов аналоговых и цифровых схем от перегрузки используется цепочка из двух диодов, подключенных к шинам питания в обратном направлении, защищаемый вход подключается к средней точке этой цепочки. При нормальной работе диоды закрыты и почти не оказывают влияния на работу схемы. При уводе потенциала входа за пределы питающего напряжения один из диодов открывается и шунтирует вход схемы, ограничивая таким образом допустимый потенциал входа диапазоном в пределах питающего напряжения плюс прямое падение напряжения на диоде. Такие цепочки могут быть уже включены в состав ИС на этапе проектирования кристалла, либо предусматриваться при разработке схем узлов, блоков, устройств. Выпускаются готовые защитные сборки из двух диодов в трёхвыводных «транзисторных» корпусах.

Для сужения или расширения диапазона защиты вместо потенциалов питания необходимо использовать другие потенциалы в соответствии с требуемым диапазоном. При защите от мощных помех, возникающих на длинных проводных линиях, например, при грозовых разрядах, может потребоваться использование более сложных схем, вместе с диодами включающих в себя резисторы , варисторы , разрядники .

E i = − L d I d t {\displaystyle {\mathcal {E}}_{i}=-L{\frac {dI}{dt}}} ,

где L {\displaystyle L} - индуктивность, I {\displaystyle I} - ток через индуктивность, t {\displaystyle t} - время.

ЭДС самоиндукции препятствует уменьшению силы тока через индуктивность и «стремится» поддержать ток на прежнем уровне. При выключении тока энергия магнитного поля , созданного индуктивностью, должна где-то рассеяться. Магнитное поле, создаваемое индуктивной нагрузкой, обладает энергией.

В электротехнике одним из электронных приборов, получивших широкое применение, является диод. Он оборудован двумя электродами и обладает переменным сопротивлением. Если ток передается в одну сторону, то в этом случае сопротивление будет низким. Когда передача тока производится в противоположную сторону - сопротивление возрастает и становится высоким.

Получается, что в первом случае прохождение тока осуществляется без каких-либо проблем, а во втором случае из-за увеличивающегося сопротивления происходят потери тока и мощности. Кроме того, наблюдается сильный нагрев диод а. Чтобы понять как работает диод, необходимо знать хотя-бы в общих чертах его устройство.

Конструкция диод а

Диод ы разделяются на несколько категорий. Они могут быть газоразрядными, электровакуумными и полупроводниковыми, которые получили наибольшее распространение. Разные диод ы используются одновременно в единой связке, благодаря чему становится возможным преобразование переменного тока в постоянный ток. Эти свойства широко используются в полупроводниковых и прочих приборах.


Основными конструктивными элементами полупроводникового диод а являются пластинки, изготовленные из специфических полупроводниковых материалов. Чаще всего, для этого используется германий или кремний. На одной стороне пластинки наблюдается проводимость р-типа, при которой осуществляется прием электронов. Эта проводимость называется дырочной. Она призвана заполнить искусственно создаваемый недостаток электронов. Другая сторона пластинки имеет электропроводимость п-типа или электронную, при которой отдаются избыточные электроны.


Между обеими сторонами пластинки существует слой, называемый р-п переходом. Во всех полупроводниках р-тип выступает в качестве анода, а п-тип служит катодом или отрицательным электродом прибора.

Особенности электровакуумных диод ов

Электровакуумные диод ы получили название ламповых диод ов. Если рассматривать устройство диод а этого типа, то, прежде всего, это лампа с расположенными внутри двумя электродами. На одном из электродов расположена нить накаливания, которая подогревает его и способствует созданию магнитного поля.


Во время разогрева происходит отделение электронов от катода с последующим их перемещением в сторону анода. Это движение возникает именно из-за образования электрического магнитного поля. При изменении полярности или направлении тока в противоположную сторону, движение электроном прекратится, поскольку в аноде отсутствует нить накаливания. Поэтому, данный вид диод ов наиболее часто используется в стабилизаторах и выпрямителях, при наличии высоковольтных составляющих.

Как работает диод