Напряжение на диоде. Напряжение диода

I . РАСЧЕТ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (обычно менее 50 кГц). В качестве выпрямительных используют плоскостные диоды, допускающие благодаря значительной площади контакта большой выпрямленный ток. Вольт-амперная характеристика диода выражает зависимость тока, протекающего через диод, от значения и полярности приложенного к нему напряжения (рис.1.1). Ветвь, расположенная в первом квадранте, соответствует прямому (пропускному) направлению тока, а расположенная в третьем квадранте обратному направлению тока.

Чем круче и ближе к вертикальной оси прямая ветвь, и ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. При достаточно большом обратном напряжении у диода наступает пробой, т.е. резко возрастает обратный ток. Нормальная работа диода в качестве элемента с односторонней проводимостью возможна лишь в режимах, когда обратное напряжение не превышает пробивного.

Токи диодов зависят от температуры (см. рис.1.1). Если через диод протекает постоянный ток, то при изменении температуры падение напряжения на диоде изменяется приблизительно на 2 мВ/°С. При увеличении температуры обратный ток увеличивается в два раза у германиевых и в 2,5 раза у кремниевых диодов на каждые 10°С. Пробивное напряжение при повышении температуры понижается.

Высокочастотные диоды - приборы универсального назначения: для выпрямления токов в широком диапазоне частот (до нескольких сотен МГц), для модуляции, детектирования и других нелинейных преобразований. В качестве высокочастотных в основном используются точечные диоды. Высокочастотные диоды имеют те же свойства, что и выпрямительные, но диапазон их рабочих частот гораздо шире.

Основные параметры:

U np - постоянное прямое напряжение при заданном постоянном прямом токе;

U обр - постоянное обратное напряжение, приложенное к диоду в обратном направлении;

I п p - постоянный прямой ток, протекающий через диод в прямом направлении;

I обр - постоянный обратный ток, протекающий через диод в обратном направлении при заданном обратном напряжении;

U np . o бр - значение обратного напряжения, вызывающего пробой перехода диода;

I np . cp - средний прямой ток, среднее за период значение прямого тока диода;

I вп.ср - средний выпрямительный ток, среднее за период значение выпрямленного тока, протекающего через диод (с учетом обратного тока);

I o бр. cp - средний обратный ток, среднее за период значение обратного тока;

Рпр - прямая рассеиваемая мощность, значение мощности, рассеиваемой диодом при протекании прямого тока;

P ср - средняя рассеиваемая мощность диода, среднее за период значение мощности, рассеиваемой диодом при протекании прямого и обратного тока;

R диф - дифференциальное сопротивление диода, отношение малого приращения напряжения диода к малому приращению тока на нем при заданном режиме

(1.1)

R np . - прямое сопротивление диода по постоянному току, значение сопротивления диода, полученное как частное от деления постоянного прямого напряжения на диоде и соответствующего прямого тока


(1.2)

R обр.д - обратное сопротивление диода; значение сопротивления диода, полученное как частное от деления постоянного обратного напряжения на диоде и соответствующего постоянного обратного тока


(1.3)

Максимально допустимые параметры определяют границы эксплуатационных режимов, при которых диод может работать с заданной вероятностью в течение установленного срока службы. К ним относятся: максимально допустимое постоянное обратное напряжение U о бр .max; максимально допустимый прямой токI пр. max , максимально допустимый средний прямой токI пр. ср .max , максимально допустимый средний выпрямленный токI вп.ср . max , максимально допустимая средняя рассеиваемая мощность диодаРср. max .

Указанные параметры приводятся в справочной литературе. Кроме того, их можно определить экспериментально и по вольт-амперным характеристикам.


Дифференциальное сопротивление находим как котангенс угла наклона касательной, проведенной к прямой ветви ВАХ в точке I пр = 12 мА (R диф ~ ctg Θ ~ )


(1.4)

Прямое сопротивление диода находим как отношение постоянного напряжения на диоде U пр =0,6В к соответствующему постоянному токуI пр =12мА на прямой ветви ВАХ.


(1.5)

Видим, что R диф <R пр.д . Кроме того, отметим, что значения данных параметров зависят от заданного режима. Например, для этого же диода приI п p =4мА


(1.6) , (1.7)

Рассчитать R обр для диода ГД107 приU обр = 20 В и сравнить с рассчитанной величинойR пр.д . На обратной ветви ВАХ ГД107 (см.рис. 1.2) находим:I обр = 75мкА приU обр =20В. Следовательно,


(1.8)

Видим, что R обр >>R пр.д , что говорит об односторонней проводимости диода. Вывод об односторонней проводимости можно сделать и непосредственно из анализа ВАХ: прямой токI п p ~мА приU пр <1B, в то время какI об p ~ десятки мкА приU обр ~десятки вольт, т.е. прямой ток превышает обратный в сотни- тысячи раз


(1.9)

Стабилитроны и стабисторы предназначены для стабилизации уровня напряжения при изменении протекающего через диод тока. У стабилитронов рабочим является участок электрического пробоя вольт-амперной характеристики в области обратных напряжений (рис. 1.3).


На этом участке напряжение на диоде остается практически постоянным при значительном изменении тока протекающего через диод. Подобной характеристикой обладают сплавные диоды с базой, изготовленной из низкоомного (высоколегированного) материала. При этом образуется узкий p-n-переход, что создает, условия для возникновения электрического пробоя при относительно низких обратных напряжениях (единицы - десятки вольт). А именно такие напряжения нужны для питания многих транзисторных устройств. В германиевых диодах электрический пробой быстро переходит в тепловой, поэтому в качестве стабилитронов применяют кремниевые диоды, обладающие большей устойчивостью в отношении теплового пробоя. У стабисторов рабочим служит прямой участок вольт-амперной характеристики (рис.1.4). У двухсторонних (двух-анодных) стабилитронов имеется два встречно включенныхp-nперехода, каждый из которых является основный для противоположной полярности.

Основные параметры:

U ст - напряжение стабилизации, напряжение на стабилитроне при протекании номинального тока;

U ст.ном - разброс номинального значения напряжения стабилизации, отклонение напряжения на стабилитроне от номи­нального значения;

R диф.ст - дифференциальное сопротивление стабилитрона, отношение приращения напряжения стабилизации на стабилитроне к вызвавшему его малому приращению тока в заданном диа­пазоне частот;

α СТ - температурный коэффициент напряжения стабилизации, отношение относительного изменения напряжения стабилизации к абсолютному изменению температуры окружающей среды при постоянном токе стабилизации.

Максимально допустимые параметры. К ним относятся: максимальный I ст. max , минимальныйI ст. min токи стабилизации, максимально допустимый прямой токI max , максимально допустимая рассеиваемая мощностьP max .

Принцип работы простейшего полупроводникового стабилизатора напряжения (рис.1.5) основан на использовании нелинейности вольт-амперной характеристики стабилитронов (см. рис.1.3).Простейший полупроводниковый стабилизатор представляет собой делитель напряжения, состоящий из ограничительного резистора R огр и кремниевого стабилитронаVD. НагрузкаRн подключается к стабилитрону,


В этом случае напряжение на нагрузке равно напряжению на стабилитроне

U R Н = U VD = U СТ (1.10)

а входное напряжение распределяется между R о гр иVD

U ВХ = U R ОГР + U СТ (1.11)

Ток через R огр согласно первому закону Кирхгофа равен сумме токов нагрузки и стабилитрона

I R ОГР = I СТ + I Н (1.12)

Величина R о гр выбирается таким образом, чтобы ток через стабилитрон был равен номинальному, т.е. соответствовал середине рабочего участка.

I СТ.НОМ = (I СТ.МИН + I СТ.МАКС ) / 2 (1.13)

Cтраница 1


Допустимые обратные напряжения диодов выбираются с некоторым запасом по отношению к напряжению пробоя. Для силовых диодов ввсдится понятие класса, т.е. предельного эксплуатационного повторяющегося напряжения в сотнях вольт, не вызывающего разрушения структуры при пробое перехода.  

Допустимым обратным напряжением диода t / o6pmax называется максимальное отрицательное напряжение на аноде, которое диод (кенотрон) может выдержать без нарушения свойства односторонней проводимости.  

А, а допустимое обратное напряжение диода не должно превышать 100 В.  

Обычно в справочных данных приводятся допустимые обратные напряжения диода С / обр шах, равные приблизительно 80 % от пробивного для диодов малой и средней мощности. При этом ток через диод не должен превышать значений / Обр max, указанных в справочнике.  

Тринистор VSi должен иметь напряжение в закрытом состоянии t / ac sfm - Допустимое обратное напряжение диодов VDi - VD3 должно быть не менее значения Um, а у тринистора VS может не нормироваться.  


Важнейшими параметрами силовых диодов являются прямой ток диода / пр, падение напряжения в прямом направлении Unp, соответствующее номинальному прямому току, допустимое обратное напряжение диода Чертах и обратный ток / обр, величина которого сильно зависит от температуры.  


При работе в схеме напряжение па диоде не должно превышать пробивное напряжение. Допустимое обратное напряжение диода i / обргоах выбирается всегда меньше пробивного.  

Очевидно, что чем больше амплитуда стробимпульса при той же его длительности, тем выше может быть уровень ограничения (так как амплитуда расширенных импульсов больше) и тем, следовательно, шире полоса. Практически целесообразность увеличения амплитуды стробимпульсов, как уже отмечалось, ограничивается только величиной допустимого обратного напряжения диодов смесителя.  

Допустимый прямой ток диодов должен быть больше максимального тока разряда батареи. Желательно, чтобы обратный ток диодов был минимальным. Допустимое обратное напряжение диодов не играет роли: оно всегда заведомо больше ЭДС одного элемента.  

Допустимый прямой ток диодов должен быть больше максимального тока разряда батареи. Желательно, чтобы обратный ток диодов был минимальным. Допустимое обратное напряжение диодов при последовательном соединении элементов в батарее не имеет значения: оно всегда заведомо больше ЭДС одного элемента.  


Схема, показанная на рис. 4 - 10Д позволяет подавать отрицательные импульсы на катод от относительного высокоомного источника. Если отсутствует вспомогательный анод, можно включить 10 и 20 Мом между катодом лампы Л2 и питающим напряжением. Допустимое обратное напряжение диода Л должно быть больше этого напряжения. Напряжение будет приложено к катоду (спад происходит с постоянной времени C Rp) до тех пор, пока анодный разряд лампы Л2 не загорится. После этого катодный ток тиратрона Л2 проводится диодом Д и на катоде тиратрона Л2 поддерживается потенциал земли.  

Возможности диода как выпрямителя характеризуются допустимыми значениями выпрямленных тока и напряжения. Допустимое значение выпрямленного тока определяется эмиссионной способностью катода и мощностью рассеяния анода. Выпрямленное напряжение ограничивается допустимым обратным напряжением диода, которое определяется электрической прочностью диода, главным образом качеством изоляции анода. Для кенотрона принято указывать не максимальное выпрямленное напряжение, а допустимое обратное напряжение.  

Есть другой способ снижения напряжения на нагрузке, но только для цепей постоянного тока. Про смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении, диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него — от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта. Исходя из того, на сколько вольт нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить: 6 В: 1,0 = 6 штук кремниевых диодов, 6 В: 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

На Рис 1 — добавочное сопротивление — резистор (проволочное сопротивление), Рис 2 — добавочное сопротивление — диод.

У резистора (проволочного сопротивления) линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В. На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.


Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

Полупроводниковый диод - самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция - это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.



На стыке соединения P и N образуется PN-переход (PN-junction). Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя. То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки . В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания - плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.



Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания - плюс к аноду, минус к катоду. В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода . Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток I D .



Чтобы не возникло путаницы, напомню, что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток, измеряемый в микро, или наноамперах (в зависимости от модели прибора). В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде. В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении. Такое напряжение называется напряжение пробоя . Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения V ϒ , для того чтобы диод начал хорошо проводить ток. Для кремниевых приборов V ϒ - это примерно 0.7V, а для германиевых - около 0.3V. Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода .

ССЫЛКИ ПО ТЕМЕ:

Вольт-амперная характеристика (ВАХ) диода

Применение диодов

Полупроводники. Часть III. Влияние примесей на проводимость

КОММЕНТАРИИ:

Tambu
писал: 2013-10-22
Написано, конечно, доступно. Вот только перепутаны причины в состоянии покоя. До контакта p и n областей они были электрически нейтральны - в p области примесь III группы отбирает электрон у полупроводника IV, полупроводник становится "дыркой", но лишний электрон у примеси никуда не исчезает, аналогично для примеси V группы - электрон улетает, но положительный ион остается. Электрическому полю взяться неоткуда - заряды друг друга компенсируют. Также непонятно с чего бы это электроны полетят назад в n область, где и без них полно электронов, из p области, где электронов практически нет. Диффузия - это же случайный процесс. Просто электроны берут и летят куда им "вздумается". Из n области в p вылетает куча, а назад лететь практически некому. Происходит накопление случайно прилетевших электронов в p области, часть из них рекомбинирует с "дырками", часть остается свободными. И вот тут уже происходит нарушение электронейтральности - p область оказывается заряжена отрицательно, n - положительно. Образуется область пространственного заряда. Появляется электрическое поле и дрейф несет электроны обратно в n область. Дрейф компенсирует диффузию, а не наоборот.
123
писал: 2013-11-22
1)Дырки попадают в n,а электроны в p засчет теплового движения, и там же они рекомбинируют, при этом образуется избыточный заряд - в p области и + в n области вблизи раздела. какая еще диффузия? в это вся и суть, что эти заряды имеют ядра атомов, а значит не могут рекомбинировать, а создают потенциальный барьер. 2)проводимость происходит совсем по другому. при прямом включении. барьер "рассасывается" засчет эл поля и дырки с электронами устремляются (под действием этого же поля) к границе p-n в результате чего они там рекомбинируют. электрон же никак не проходит через оба перехода. С катода электроны "перебегают" в n область, а на анод "забирает электроны" из p области. все это под действием эл поля источника. В обратном направлении тоже ничего подобного. Просто анод "забирает" электроны из n области, а катод отдает электроны дыркам, из за чего в p области область отрицательно заряженных ионов еще расширяется, а в n области расширяется область положительно заряженных ионов(см выше - потенциальный барьер расширяется).

Сегодня диоды можно встретить практически в любом бытовом приборе. Многие даже собирают некоторые устройства в своей домашней лаборатории. Но, чтобы правильно использовать эти элементы электросхемы, нужно знать, что собой представляет ВАХ диода. Именно этой характеристики и будет посвящена данная статья.

Что это такое

ВАХ расшифровывается как вольт-амперная характеристика диодного полупроводника. Она отражает зависимость тока, который проходит через p-n переход диода. ВАХ определяет зависимость тока от величины, а также полярности приложенного напряжения. Вольт-амперная характеристика имеет вид графика (схема). Данный график имеет следующий вид:

ВАХ для диода

Для каждого вида диода график ВАХ будет иметь свой конкретный вид. Как видим, график содержит кривую. По вертикали вверху здесь отмечены значения прямого тока (прямом включении), а внизу – в обратном. Но горизонтали схема и график отображают напряжение, аналогично в прямом и обратном направлении. Таким образом схема вольт-амперной характеристики будет состоять из двух частей:

  • верхняя и правая часть – элемент функционирует в прямом направлении. Она отражает пропускной ток. Линия в этой части идет резко вверх. Она характеризует значительный рост прямого напряжения;
  • нижняя левая часть – элемент действует в обратном направлении. Она соответствует закрытому (обратному) току через переход. Здесь линия идет практически параллельно горизонтальной оси. Она отражает медленное нарастание обратного тока.

Обратите внимание! Чем круче будет вертикальная верхняя часть графика, и ближе к горизонтальной оси нижняя линия, тем более лучше будут выпрямительные свойства полупроводника.

Стоит отметить, что ВАХ сильно зависит от температуры окружающей среды. К примеру, повышение температуры воздуха может привести резкому повышению обратного тока.
Построить своими руками ВАХ можно следующим образом:

  • берем блок питания;
  • подключаем его к любому диоду (минус на катод, а плюс на анод);
  • с помощью мультиметром делаем замеры.

Из полученных данных и строится вольт-амперная характеристика для конкретного элемента. Ее схема или график могут иметь следующий вид.


Нелинейная ВАХ

На графике видна ВАХ, которая в таком исполнении называется нелинейной.
Рассмотрим на примерах различных типов полупроводников. Для каждого отдельного случая данная характеристика буде иметь свой график, хотя они все будут носить единый характер лишь с небольшими изменениями.

ВАХ для шотки

Одним из наиболее распространенных диодов на сегодняшний день является шоттки. Этот полупроводник был назван в честь физика из Германии Вальтера Шоттки. Для шоттки вольт-амперная характеристика будет иметь следующий вид.


ВАХ для шоттки

Как видим, для шоттки характерно малое падение напряжения в ситуации прямого подключения. Сам график носит явный ассиметричный характер. В зоне прямых смещений наблюдается экспоненциальное увеличение тока и напряжения. При обратном и прямом смещении для данного элемента ток в барьере обусловлен электронами. В результате этого такие элементы характеризуется быстрым действием, поскольку у нет диффузных и рекомбинационных процессов. При этом несимметричность ВАХ будет типичной для структур барьерного типа. Здесь зависимость тока от напряжения определена изменением количества носителей, которые берут участие в зарядопереносных процессах.

Кремниевый диод и его ВАХ

Кроме шоттки, большой популярностью на данный момент пользуются кремниевые полупроводники. Для кремниевого типа диода вольт-амперная характеристика выгляди следующим образом.


ВАХ кремниевого и германиевого диода

Для таких полупроводников данная характеристика начинается примерно со значения 0,5-0,7 Вольт. Очень часто кремниевые полупроводники сравнивают с германиевыми. Если температуры окружающей среды равны, то оба устройства будут демонстрировать ширину запрещённой зоны. При этом кремниевый элемент будут иметь меньший прямой ток, чем из германия. Это же правило касается и обратного тока. Поэтому у германиевых полупроводников обычно сразу наступает тепловой пробой, если имеются обратное большое напряжение.
В итоге, при наличии одинаковой температуры и прямого напряжения, потенциальный барьер у кремниевых полупроводников будет выше, а ток инжекции ниже.

ВАХ и выпрямительный диод

В завершении хотелось бы рассмотреть данную характеристику для выпрямительного диода. Выпрямительный диод – одна из разновидностей полупроводника, который применятся для преобразования переменного в постоянный ток.


ВАХ для выпрямительного диода

На схеме показана экспериментальная ВАХ и теоретическая (пунктирная линия). Как видим, они не совпадают. Причина этого кроется в том, для теоретических расчетов не учитывались некоторые факторы:

  • наличие омического сопротивления базовой и эмиттерной областей у кристалла;
  • его выводов и контактов;
  • наличие возможности токов утечки по кристальной поверхности;
  • протекание процессов рекомбинации и генерации в переходе для носителей;
  • различные типы пробоев и т. д.

Все эти факторы могут оказывать различное влияние, приводя к отливающейся от теоретической реальной вольт-амперной характеристики. Причем значительное влияние на внешний вид графика в данной ситуации оказывает температура окружающей среды.
ВАХ для выпрямительного диода демонстрирует высокую проводимость устройства в момент приложения к нему напряжения в прямом направлении. В обратном же направлении наблюдается низкая проводимость. В такой ситуации ток через элемент практически не течет в обратном направлении. Но это происходит только при определенных параметрах обратного напряжения. Если его превысить, то на графике видно лавинообразное повышение тока в обратном направлении.

Заключение

Вольт-амперная характеристика для диодных элементов считается важным параметром, отражающем специфику проведения тока в обратном и прямом направлениях. Она определяется в зависимости от напряжения и температуры окружающей среды.