Светодиодные лампы – польза или вред

Еще совсем недавно лампы на основе диодов в наших домах были редкостью. Буквально лет пять назад повсеместно рекламировались энергосберегающие люминесцентные светильники, которые казались очень хорошим вариантом освещения для экономии электроэнергии и замены ламп накаливания в быту и на производстве. Были разработаны даже программы перехода на энергосберегающее освещение, причем в масштабе страны. Вплоть до того, что лампы накаливания грозились вот-вот запретить. Помню, примерно в 2011 году, в одной из телепередач демонстрировались различные виды энергосберегающих ламп для дома и были показаны, в том числе, диодные светильники. Но их изготовители объясняли, что такие лампы, хотя и экологичные, но маломощные и очень дорогие, и вряд ли смогут в ближайшее десятилетие конкурировать с люминесцентными энергосберегающими лампами в быту.

Жизнь опровергла этот прогноз. Стремительный прогресс в светодиодном освещении действительно удивляет. Мощность ламп растет, стоимость снижается. Сейчас лампочку на 11 Вт (эквивалент лампы накаливания 75 Вт) можно купить за 100 - 150 руб. При этом срок службы, заявленный для лампы - 50000 часов. Лампы стали по форме неотличимы от привычных ламп накаливания, белый свет может быть холодного и теплого оттенка. Этот новый осветительный прибор теперь есть почти в каждом доме.

Но, как и все новые приборы, светодиодная лампа вызывает вопросы и настороженность. Не принесет ли она вред здоровью, зрению? Какие недостатки, возможно, скрывает производитель, стараясь получить прибыль? Мы опубликовали уже на нашем сайте ряд статей о новых приборах (Вредно ли разогревать пищу в микроволновке? Вред и польза инфракрасного нагревателя . Вред и польза индукционной плиты .) Сейчас очередь бытовой светодиодной лампы.

Прежде всего, небольшое разъяснение о принципе работы светодиодной лампы. Международное название такой лампы LED (light-emitting diode).Стандартный светоизлучающий диод содержит три слоя полупроводниковых материалов. Электрическое напряжение заставляет электроны от анода (n-слоя) и дырки от электрода (p-слоя) двигаться в промежуточный слой, где они рекомбинируют с излучением фотонов. Промежуточный слой представляет собой специальный кристалл с определенной шириной запрещенной зоны. Ширина этой зоны, а также примеси в кристалле определяют цвет излучения. В начале 1960-х созданы первые промышленные образцы светодиодов на основе фосфорида и арсенида галлия, излучающие красный свет, а потом и зеленый. Уже тогда эти устройства были эффективнее обычных ламп накаливания. Применялись они в качестве разнообразных цветовых индикаторов. Однако получить дешевый и яркий синий светодиод долго не удавалось. А без добавления синего цвета, как известно, невозможно получить белый свет, необходимый для освещения домов.

Не удивительно, что нобелевская премия по физике в 2014 году была вручена японским ученым Исаму Акасаки (Isamu Akasaki), Хироси Амано (Hiroshi Amano) и Сюдзи Накамура (Shuji Nakamura) за разработку «принципиально новых экологически чистых источников света», а именно за изобретение синих светодиодов, которые в комбинации с красными и зелеными могут дать прекрасный белый источник света. Главная трудность в изобретении синего светодиода заключалась в поиске хорошего кристалла для промежуточного слоя. Чтобы он излучал синий свет, необходим материал с большой шириной запрещенной зоны. Решение было найдено, когда предложили использовать светодиод с кристаллом из нитрида галлия (GaN) на сапфировой подложке. Промежуточный слой подвергался специальной термообработке и получал примеси не только магния, но и цинка, а потом — и индия. Хотя изобретение японских ученых было сделано еще в середине 90-х годов 20 века, его практическую значимость оценили и стали повсеместно использовать в 21 веке. В 2001 г. была впервые доказана возможность применения в светодиоде кварцевой подложки, вместо сапфировой, что открыло дорогу для производства более дешевых ламп.


Сейчас множество компаний выпускают бытовые светодиодные лампы и светильники. Крупнейшими производителями светодиодов в России и Восточной Европе являются компании «Оптоган» и «Светлана-Оптоэлектроника» (г. Санкт-Петербург).

Рассмотрим сначала преимущества таких ламп. Их не так мало и они довольно убедительны.

  1. Высокая световая отдача, достигающая 146 люмен на ватт.
  2. Высокая механическая прочность, вибростойкость (отсутствие нити накаливания, хрупкого стекла)
  3. Длительный срок службы — от 30000 до 100000 часов (при работе 8 часов в день — 34 года). Срок службы лампы сильно зависит от температуры. При эксплуатации при температурах выше комнатных срок службы сокращается.
  4. Малая инерционность — включаются сразу на полную яркость, в то время как у ртутно-фосфорных (люминесцентных-экономичных) ламп время включения от 1 с до 1 мин, а яркость увеличивается от 30 % до 100 % за 3-10 минут, в зависимости от температуры окружающей среды.
  5. Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп). Безопасность — не требуются высокие напряжения, низкая температура светодиода или арматуры, обычно не выше 60 °C.
  6. Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
  7. Экологичность — отсутствие ртути и фосфора внутри лампы.

Технология постоянно совершенствуется, для того, чтобы сделать лампы более экологичными, приносящими только пользу нашим глазам. Однако, как и в случае с другими приборами, есть дешевые и дорогие варианты. Производители порой не указывают на коробке всех характеристик. Рассмотрим кратко, какие проблемы могут волновать людей при использовании ламп со светодиодами.

1. Это, прежде всего, спектр излучения. В 2013 Интернет облетела информация о вреде LED-освещения, со ссылкой на исследование испанских ученых из Университета Комплутенсе, которое показало, что свет, который излучают светодиодные лампы, может существенно повредить сетчатку человеческого глаза. Более того, эти повреждения могут быть настолько сильными, что никакие медикаментозные и операционные процедуры уже не смогут помочь. Иногда встречаются заметки о том, что якобы в спектре светодиодных ламп присутствует жесткая синяя и даже ультрафиолетовая составляющая, вредная для наших глаз. Действительно, существуют санитарные нормы УФ облучения сетчатки, которые рекомендуется не превышать. Заметим, что самый сильный источник УФ излучения - это Солнце. Все эксперименты для подтверждения вредности УФ излучения проводились на животных и вредное влияние на сетчатку было отмечено только при длительной облучении очень ярким светом.

На следующем рисунке показан спектр четырех ламп - одной лампы накаливания и трех светодиодных ламп. Рисунок взят из публикации 2011 г. на сайте http://geektimes.ru/post/253792/ .


Самый низкий пик кривой спектра в диапазоне 400-500 нм. - у лампы Оптоган. Поэтому у этой лампы самая низкая цветовая температура, она равна 3050 °С. (Интересно, что стоимость такой лампы была в 2011 г. равна 995 руб.!) Как мы уже говорили, прогресс достигнут огромный. Сейчас уже большинство бытовых осветительных ламп имеют цветовую температуру 2700-3000 К, которая далека от УФ области. И все же, выбирая лампу в магазине, обратите внимание на ее цветовую температуру. Этот параметр всегда есть на коробке.

Что касается выводов, сделанных испанскими учеными, то они относятся к излучению всевозможных экранов на светодиодах, таких как дисплеи всяческих гаджетов, компьютеров, телевизоров и т.д. Ученые доказали, что если долго, без всякой защиты глаз смотреть на такие экраны, то это действительно может привести к постепенным изменениям сетчатки глаза. Поэтому рекомендуется защищать глаза при долгой работе с компьютером специальными очками. Делать частые перерывы. На осветительные приборы мы долго и пристально не смотрим, поэтому вреда от них нет.

2. Мерцание света. Частота мерцания лампы зависит от принципа работы и конструкции. Мерцание света может отрицательно сказываться на здоровье, поэтому здесь тоже есть санитарные нормы. Пульсации светового потока (амплитуда колебания яркости) в жилой комнате или в рабочем офисном помещении не должны быть более 20%. Пульсации света очень характерны для старых люминесцентных ламп. Для хороших светодиодов они минимальны - менее 1%. Хотя есть более дешевые экземпляры ламп с пульсациями более 60%. Этот параметр обычно не указывают в описании на коробке с лампой. Можно посоветовать просто покупать не самые дешевые современные лампы. В них питание идет через специальные драйверы, а не через конденсаторы. В Интернете есть советы, как самостоятельно оценить пульсации света. Предлагается смотреть на лампу через камеру мобильного телефона.

3. Еще одна проблема, связанная со спектром диодной лампы, которая иногда упоминается в Интернете - вред яркого белого цвета на здоровье человека. Имеется в виду уже не влияние на зрение, а влияние на нервную систему, подавление выработки гормона сна - мелатонина. Рекомендуется вечером за пару часов до сна снижать яркость ламп, использовать более теплый свет. В отличие от люминесцентных ламп, некоторые светодиодные лампы, подобно лампам накаливания, поддерживают функцию регулирования яркости с помощью регуляторов мощности «диммеров», это должно указываться производителем на упаковке.

4. Проблема с насекомыми. Они любят яркий свет, причем лампы накаливания их притягивают меньше, чем диодные, в том числе из-за их сильного нагрева. Диодные лампы, которые ярче ламп накаливания и при этом не греются, порой собирают вокруг себя тучи летающих насекомых. Эта проблема особенно актуальна при освещении больших южных городов, где происходит порой «нашествие» разнообразных комаров, мух, цикад.

Светодиодная лампа - одно из самых нужных и важных изобретений нашего времени. Оно не только улучшает качество света в наших домах, а также помогает решить проблему экономии энергии - одну из самых актуальных проблем на Земле.

Массовое появление светодиодных ламп на прилавках хозяйственных магазинов, визуально напоминающих лампу накаливания (цоколь Е14, Е27), привело к появлению дополнительных вопросов среди населения о целесообразности их применения. Рекламодатели заявляют о небывалых энергетических показателях, рабочем ресурсе в несколько десятков лет и мощнейшем световом потоке инновационных источников света. Исследовательские центры, в свою очередь, выдвигают теории и преподносят факты, свидетельствующие о вреде светодиодных ламп. Как далеко шагнули осветительные технологии, и что скрывает обратная сторона медали под названием «светодиодное освещение»?

Что правда, а что вымысел?

Несколько лет использования светодиодных ламп позволило учёным сделать первые выводы об их истинной эффективности и безопасности. Оказалось, что такие яркие источники света, как светодиодные лампы также имеют свои «тёмные стороны». Негатива добавили китайские коллеги, которые, в очередной раз, наводнили рынок некачественной продукцией. Какому освещению отдать предпочтение, чтобы в погоне за энергоэффективностью не ухудшить зрение? В поисках компромиссного решения придётся ближе познакомиться со светодиодными лампами.

В конструкции имеются вредные вещества

Чтобы убедиться в экологичности светодиодной лампы, достаточно вспомнить из каких деталей она состоит. Её корпус выполнен из пластика и стального цоколя. В мощных образцах по окружности расположен радиатор из алюминиевого сплава. Под колбой закреплена печатная плата со светоизлучающими диодами и радиокомпоненты драйвера. В отличие от энергосберегающих люминесцентных ламп колбу со светодиодами не герметизируют и не заполняют газом. По наличию вредных веществ, светодиодные лампы можно занести в одну категорию с большинством электронных устройств без аккумуляторов. Безопасная эксплуатация – существенный плюс инновационных источников света.

Белый светодиодный свет вредит зрению

Отправляясь за покупкой LED-ламп, нужно обращать внимание на . Чем она выше, тем больше интенсивность излучения в синем и голубом спектре. Сетчатка глаза наиболее чувствительна к синему свету, который в течение длительного повторяющегося воздействия приводит к её деградации. Особенно вреден холодный белый свет для детских глаз, структура которых находится в стадии развития.

Чтобы снизить раздражение органов зрения в светильники с двумя и более патронами рекомендуется включать лампы накаливания малой мощности (40–60 Вт), а также использовать светодиодные лампы, излучающие тёплый белый свет. Применение подобных светильников без высокого не наносит вреда и одобрено министерством здравоохранения РФ. Цветовая температура (Тс) указывается на упаковке и должна быть в пределах 2700–3200 К Российские производители Оптоган и SvetaLed рекомендуют приобретать осветительные приборы теплых тонов, т. к. их спектр излучения наиболее похож на солнечный свет.

Сильно мерцают

Вред пульсаций от любого искусственного источника света давно доказан. Мерцания частотой от 8 до 300 Гц отрицательно влияют на нервную систему. Как видимые, так и невидимые пульсации проникают через органы зрения в головной мозг и способствуют ухудшению здоровья. Светодиодные лампы не стали исключением. Однако, не всё так плохо. Если выходное напряжение драйвера дополнительно проходит качественную фильтрацию, избавляясь от переменной составляющей, то величина пульсаций не превысит 1%.

Коэффициент пульсаций (Кп) ламп, в которые встроен импульсный блок питания, не превышает 10%, что удовлетворяет санитарным нормам, действующим на территории РФ. Цена прибора освещения с высококачественным драйвером не может быть низкой, а её производитель должен быть известным брендом.

Подавляют секрецию мелатонина

Мелатонин – гормон, отвечающий за периодичность сна и регулирующий суточный ритм. В здоровом организме его концентрация увеличивается с наступлением темноты и вызывает сонливость. Работая в ночное время, человек подвержен воздействию различных вредных факторов, в том числе и освещения. В результате неоднократных исследований доказано негативное воздействие светодиодного света в ночное время на зрение человека.

Поэтому с наступлением темноты следует избегать яркого светодиодного излучения, особенно в спальных комнатах. Отсутствие сна после длительного просмотра телевизора (монитора) со светодиодной подсветкой также объясняется снижением выработки мелатонина. Систематическое воздействие синего спектра в ночное время провоцирует бессонницу. Кроме регуляции сна мелатонин нейтрализует окислительные процессы, а значит, замедляет старение.

Для светодиодных ламп не имеется стандартов

Данное утверждение является частично ошибочным. Дело в том, что светодиодное освещение ещё развивается, а значит, обретает новые плюсы и минусы. Индивидуального стандарта для него не существует, но оно включено в ряд действующих нормативных документов, предусматривающих влияние искусственного освещения на человека. Например, ГОСТ Р МЭК 62471–2013 «Светобиологическая безопасность ламп и ламповых систем». В нём подробно описаны условия и методики измерений параметров ламп, включая светодиодные, приведены формулы для расчёта предельных значений опасного облучения. Согласно МЭК 62471–2013 все лампы непрерывной волны классифицируют по четырём группам опасности для глаз. Определение группы риска для конкретного типа ламп проводят экспериментально на основании замеров опасного УФ и ИК излучения, опасного синего света, а также теплового воздействия на сетчатку глаза.

СП 52.13330.2011 устанавливает нормативные требования ко всем видам освещения. В разделе «Искусственное освещение» светодиодным лампам и модулям уделено должное внимание. Их рабочие параметры не должны выходить за рамки допустимых значений, предусмотренных настоящим сводом правил. Например, п.7.4 указывает на применение в качестве источников искусственного освещения ламп с цветовой температурой 2400–6800 К и максимально допустимым УФ-излучением 0,03 Вт/м2. Кроме этого, нормируется значение коэффициента пульсаций, освещённости и световой отдачи.

Излучают много света в инфракрасном и ультрафиолетовом диапазоне

Чтобы разобраться с данным утверждением, нужно проанализировать два способа получения белого света на базе светодиодов. Первый способ предполагает размещение в одном корпусе трёх кристаллов – синего, зеленого и красного. Излучаемая ими длина волны не выходит за пределы видимого спектра. Следовательно, такие светодиоды не генерируют световой поток в инфракрасном и ультрафиолетовом диапазоне.

Чтобы получить белый свет вторым способом на поверхность синего светодиода наносят люминофор, который формирует световой поток с преобладающим желтым спектром. В результате их смешения можно получить разные оттенки белого. Присутствие УФ излучения в данной технологии ничтожно и безопасно для человека. Интенсивность ИК излучения в начале длинноволнового диапазона не превышает 15%, что несоизмеримо мало с аналогичным значением для лампы накаливания. Рассуждения о нанесении люминофора на ультрафиолетовый светодиод вместо синего небезосновательны. Но, пока, получение белого света таким методом является дорогостоящим, имеет низкий КПД и много технологических проблем. Поэтому до промышленных масштабов белые лампы на УФ светодиодах ещё не дошли.

Имеют вредное электромагнитное излучение

Высокочастотный модуль драйвера является самым мощным источником электромагнитного излучения в LED-лампе. Испускаемые драйвером ВЧ импульсы, могут влиять на работу и ухудшать передаваемый сигнал радиоприёмников, WIFI передатчиков, расположенных в непосредственной близости. Но вред от электромагнитного потока светодиодной лампы для человека на несколько порядков меньше вреда от мобильного телефона, СВЧ печи или WIFI роутера. Поэтому влиянием электромагнитного излучения от LED ламп с импульсным драйвером можно пренебречь.

Дешёвые китайские лампочки безвредны для здоровья

Частично ответ на это утверждение уже дан выше. Относительно китайских светодиодных ламп принято считать: дешево – значит некачественно. И к сожалению, это действительно так. Анализируя товар в магазинах, можно отметить, что все LED лампы стоимостью менее 200 рублей за штуку имеют некачественный модуль преобразования напряжения. Внутри таких ламп вместо драйвера ставят бестрансформаторный блок питания (БП) с полярным конденсатором для нейтрализации переменной составляющей. Из-за малой ёмкости с возложенной функцией конденсатор справляется лишь частично. Как следствие – коэффициент пульсаций может достигать до 60%, что может негативно повлиять на зрение и здоровье человека в целом.

Минимизировать вред от таких светодиодных ламп можно двумя способами. Первый предусматривает замену электролита на аналог ёмкостью около 470 мкФ (если позволит свободное пространство внутри корпуса). Такие лампы можно будет использовать в коридоре, туалете и прочих комнатах с низким зрительным напряжением. Второй – более дорогостоящий и предполагает замену некачественного БП на драйвер с импульсным преобразователем. Но в любом случае для освещения жилых комнат и рабочих мест лучше использовать достойные , а от приобретения дешевой продукции из Китая лучше воздержаться.

На сегодняшний день потребитель светодиодного освещения в РФ привык оценивать осветительные приборы со светодиодными источниками света в сравнении с более привычными источниками света, например, с лампами накаливания. Оценка соответствия обычно производится только по одному критерию — яркости получаемого освещения.

Светодиодные лампы представленные на рынке РФ, в основной своей массе, имеют энергоэффективность 80Лм/Вт и выше, что позволяет без потери яркости заменять лампы накаливания и галогенные лампы. Но, при этом мало кто задумывается о потере в качестве «освещения», в то время как фактор качества света даже более важен, чем фактор яркости освещения.

Наиболее часто качество освещения оценивают по пульсациям освещенности от источника света и по спектру излучаемого света.

Подробно вопрос пульсаций освещенности рассмотрен в статье «Пульсации освещенности: какой вред и как себя уберечь» , найти которую вы можете, пройдя по ссылке:

В этой статье будет рассматриваться вопрос качества спектра излучения светодиодов и может ли светодиодное освещение приносить вред.

Наиболее существенным для человека участком оптического спектра является видимый свет.

Границы длин волн видимого излучения согласно ГОСТ Р МЭК 62471-2013 «Лампы и ламповые системы. Светобиологическая безопасность», находятся в диапазоне от 360-400 нм до 760-830 нм. Точных пределов не существует, так как это зависит от мощности достигаемого сетчатки глаза излучения и чувствительности наблюдателя.

Свет в этом диапазоне длин вол улавливается зрительным органом человека — глазом и позволяет получать до 90% информации об окружающем мире.

Основные фоторецепторы сетчатки глаза — нервные клетки, чувствительные к свету, — так называемые «палочки» (различают свет) и «колбочки» (различают цвет и форму предметов). Информация от сетчатки глаза в виде нервных импульсов передается в кору больших полушарий головного мозга. Но свет воспринимается не только палочками и колбочками, но и иными элементами сетчатки, не участвующими в формировании зрительного восприятия. Эти элементы передают энергию света в незрительные отделы головного мозга, которые регулируют нейроэндокринную систему организма, определяют циркадные биоритмы (периоды бодрствования и сна), влияют на общее ощущение бодрости, трудоспособности, что в конечном итоге определяет психологическое состояние человека и влияют на его здоровье.

Прежде всего, освещение влияет на синтез «гормона сна» — мелатонина. Установлено, что незрительные фоторецепторы максимально чувствительны к коротковолновым излучениям видимого света — т.е. к синему и УФ спектру излучения. Под воздействием света происходит подавление активности мелатонина, что провоцирует синтез «гормона стресса» — кортизола.

Снижение уровня гормона мелатонина и увеличение уровня гормона кортизола в крови может привести к следующим последствиям:

  1. расстройство сна;
  2. снижение как умственной так и физической работоспособности;
  3. снижение активности иммунной системы;
  4. снижается устойчивость к стрессовым ситуациям;
  5. риск возникновения депрессии;
  6. риск обострения хронических заболеваний.

Излучение светодиодов белого света представляет собой «сумму» двух излучений: излучение синего светодиода и излучение желтого люминофора, который высвечивает часть световой энергии светодиода. Линейчатый спектр синего светодиода дает ярко выраженную полосу излучения в сине-голубой области спектра 440-460 нм. На рисунке ниже спектр излучения белого светодиода 5000К:

В статье «О биологическом эквиваленте излучения светодиодных и традиционных источников света с цветовой температурой 1800–10000 K» были проанализированы особенности биологического воздействия излучения различных источников света на степень биологической активности по мелатонину в крови человека.





Чем ниже биологический эквивалент, тем ниже воздействие источника света на секрецию гормона мелатонина. По этим результатам можно судить, что компактные люминисцентные лампы и светодиодные лампы с цветовой температурой 2700К и индексом цветопередачи выше 80 имеют даже меньшую активность к мелатонину чем лампы накаливания. Светодиодные лампы с цветовой температурой 3000-3200К имеют чуть большую биологическую активность. А вот любителям холодного цвета свечения не повезло: биологическая активность таких ламп в 2,3 раза превышает активность лампы накаливания.

Помимо подавления активности мелатонина, также существует опасность повреждения сетчатки глаза коротковолновым видимым излучением (длины волн 440-460 нм). Особенно такая опасность касается детских глаз, у которых хрусталик практически вдвое прозрачнее в сине-голубой области спектра, чем у взрослых людей. По результатам исследований наименее опасными для зрения представляются светодиоды с цветовой температурой не выше 4000К, у которых уровень излучения в сине-голубой области спектра не превышают уровень в желто-оранжевой области.

Повреждение сетчатки глаза излучением сине-голубой области спектра — это длительный процесс, результаты которого накапливаются в течение всей жизни. Возможные последствия — медленное необратимое падение зрения.

Способы предотвращения негативного влияния искусственного освещения:

  1. Не использовать в помещениях с продолжительным пребыванием людей осветительных приборов со светодиодами с цветовой температурой выше 3000К (лучше 2700К). Индекс цветопередачи должен быть не ниже 80 (лучше Ra>85).
  2. Отдавать предпочтение источникам света с матовым рассеивателем, чтобы снизить слепимость от источника света.
  3. В детских лучше устанавливать галогенные лампы или лампы накаливания они обеспечивают комфортный непрерывный спектр излучения и высокий индекс цветопередачи — приняты за эталонный источник света.
  4. Избегать яркого освещения в конце рабочего дня, это позволит более легко и плавно отойти ко сну. В быту для понижения яркости можно использовать лампы, подходящие для работы с диммером (только они должны быть с качественным источником питания, чтобы не было пульсаций освещенности).
  5. Никогда не смотрите на работающую лампу.

Всем здоровых глаз и хорошего самочувствия.

В статье использовались материалы из источников:

  1. Б.Ю. Айзенберг – «Справочная книга по светотехнике», 3-е издание, 2006г.
  2. ГОСТ Р 62471-2013 «Лампы и ламповые системы.Светобиологическая безопасность», Стандартинформ, 2014.
  3. П.П. ЗАК, М.А. ОСТРОВСКИЙ: «Потенциальная опасность освещения светодиодами для глаз детей и подростков», журнал «Светотехника» №3, 2012г.
  4. А.В. АЛАДОВ, А.Л. ЗАКГЕЙМ, М.Н. МИЗЕРОВ, А.Е. ЧЕРНЯКОВ: «О биологическом эквиваленте излучения светодиодных и традиционных источников света с цветовой температурой 1800–10000 K», журнал «Светотехника» №3, 2012г.

В идеале для оценки качества спектра излучения лампы необходим спектрофотометр. В крайнем случае можно использовать спектрофотометры для профилирования/калибровки мониторов (например, ColorMunki) - если такое устройство у вас есть. Покупать же спектрофотометры домой для оценки ламп нет никакого смысла, они стоят от сотен до десятков тысяч долларов.

Тем не менее, для нужд геологов и ювелиров выпускают простейшие спектроскопы на основе диффракционной решетки. Их стоимость от 1200 до 2500 руб. И это забавная и полезная штука.

Выглядит спектроскоп так:

В окуляр (слева, где конус) нужно смотреть, при этом объектив (справа) должен быть направлен на источник излучения.

Диффракционная решетка разлагает свет на спектр (как радуга или оптическая призма).

Прежде чем вникать в спектры реальных ламп, напомню общую информацию. (Достаточно подробно это рассмотрено в книге в главе «Качество света»).

Здесь я покажу два спектра СДЛ с исключительно высоким индексом цветопередачи 97 (источник ):

Холодный свет:



Можно видеть, что цветовая температура 5401 К, индекс 97. Главное же - можно видеть из каких видимых глазами цветов состоит спектр.

Теплый свет:



Температура 3046 К, индекс также 97.

Спектрофотометр - в отличие от спектроскопа - показывает не просто, какие цвета образуют спектр, но и дает их интенсивность. Хорошо видно, что в спектрах обеих ламп есть все цвета, составляющие белый («каждый охотник желает знать где сидит фазан», т.е. красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый). Различие в цветовой температуре достигается за счет относительного вклада холодных (синий-голубой) и теплых (желтый-красный) компонентов.

Вынужден упомянуть о том, что данный спектроскоп предназначен для мобильного использования с помощью глаз. Фиксировать картинку крайне неудобно, поскольку окуляр маленький и устройств для фиксации на камере нет. Поэтому одной рукой нужно удерживать камеру, другой спектроскоп, а голосом управлять съемкой. При этом еще нужно удерживать направление на источник света, небольшие отклонения от нормали приводят к искажению цветов спектра. Из почти десятка разноообразных камер, что есть у меня дома, лучшим оказался планшет «Самсунг». Камера там всего 5 мп, но хороший софт, а размер и положение объектива на корпусе устройства позволяют более-менее удобно пристроить спектроскоп. Баланс белого был зафиксирован как «дневной», ИСО 400. Снимки не обрабатывались, лишь выравнивались и обрезались. Цифры справа обозначают индекс цветопередачи источника (100 - дневной свет в облачную погоду, 99 - лампа накаливания). Качество фотографий меня не очень устраивает - но лучше я сделать не смог.


Итак, начнем сверху вниз и на конкретных примерах попытаемся понять, на что нужно обращать внимание в таких спектрах.

Дневной свет и лампа накаливания: идеальный спектр, в котором представлены все вышеперечисленные цвета.

СДЛ с индексами цветопередачи 87 (обзор ) и 84 (обсуждалась по выбору производителя) также демонстрируют практически полный спектр. Проблемой обычно становится красная часть - если желтого и оранжевого, как правило, достаточно, то глубокие красные оттенки чаще всего отсутствуют. Не видно их и здесь. Также можно предположить (например, по количеству голубого в спектрах), что производители используют разные светодиоды 5736SMD. Т.е. мы имеем дело не с одной и той же лампой, приобретенной у разных продавцов - а с различными производителями.

СДЛ с индексом 78 (ее разбор приведен в главе «Пример оценочного тестирования» в книге) наряду с урезанной красной частью демонстрирует и малое количество голубого. (Может показаться, что в сравнении со спектром лампы с индексом 84 это не так. Но тут нужно вспомнить, что 84 - это теплая лампа, Т=2900. А 78 - холодная, Т=5750 К, там синего по определению намного больше). Именно в этом главные недостатки простых бюджетных СДЛ, которые формируют якобы белый свет за счет синего или пурпурного излучения светодиода и желто-оранжевого света люминофора. Справа от синего лежит голубой - но из описанной комбинации он «не получается». Поэтому в спектре СДЛ там обычно провал. За счет этого (плюс дефицит глубокого красного) и падает индекс цветопередачи.

Самый нижний спектр - это высококачественная компактная люминесцентная лампа (КЛЛ, Т=2700 К, ресурс 12000 часов, заявленный индекс цветопередачи не менее 80). И вот здесь хорошо видно, за счет чего достигается эта формально достаточно высокая величина. Сам производитель называет это «система Tricolor». Т.е. он использует люминофор из 3 компонентов, каждый из которых излучает свет в виде узкой полосы. (Конечно, и такую лампу сделать совсем непросто, т.к. требуется тщательный подбор комбинации люминофоров.) Именно наличие таких вертикальных полос (например, фиолетовая, зеленая, желтая) - признак низкокачественных источников света. Вторым следствием линейчатого спектра источника является физическое отсутствие некоторых цветов в принципе (на рисунке, например, практически нет желтого и очень мало голубого). Очевидно, что свет таких ламп для глаз малополезен несмотря на формально достаточно высокие показатели. Использовать такие лампы нужно в светильниках с качественными рассеивателями (хотя, конечно, спектра лампы это не изменит).

Вывод: в спектрах источников света с высоким индексом цветопередачи должны присутствовать все цвета спектра и отсутствовать интенсивные узкие полосы.

Отдельно хочу предостеречь от поспешности в анализе спектров. По роду деятельности я много общался со спектроскопистами и заметил железную закономерность: чем более квалифицированный и профессиональный специалист - тем более он осторожен и уклончив в своих выводах. От лучшего из них, профессора, заведующего лабораторией спектроскопии вообще в принципе было невозможно добиться внятного заключения (что меня вначале по молодости дико раздражало). Глаз, безусловно, лучший оптический прибор из существующих. Но анализ и интерпретация спектров - бесконечно сложная тема. Там действует огромное количество разных факторов. Поэтому настоятельно рекомендую только простейшую качественную оценку спектров глазами, без попыток хитрых умопостроений и далеко идущих выводов. Лучше всего попеременно смотреть на спектр оцениваемой лампы и на идеальный спектр дневного света или ЛН. Т.е. наглядное сравнение между собой.

Нас приучают к экономии электроэнергии. Изымаются из обращения лампы накаливания, их место постепенно занимают источники света, потребляющие меньшую мощность при излучении того же светового потока. Казалось бы, использование компактных люминесцентных (КЛЛ) и светодиодных ламп несет очевидную пользу, раз их продвижение на рынке формируется на государственном уровне. Вопрос о целесообразности применения КЛЛ вызывает небезосновательные споры, но есть ли вред от светодиодных ламп?

На сегодняшний день светодиодная лампочка – самый экономичный источник света, обладающий рядом неоспоримых преимуществ перед КЛЛ:

  • отсутствие в конструкции хрупких деталей (стеклянной колбы);
  • мгновенное зажигание;
  • нет нитей накала, являющихся слабым узлом КЛЛ, наиболее часто выходящим из строя;
  • перспективы развития, возможность встраивания светодиодов в любые устройства из-за их небольших габаритов;
  • низкий потребляемый ток делает экономически целесообразной возможность работы светодиодных источников света от аккумуляторов.

И самое главное – в отличие от КЛЛ светодиодные лампы не содержат в себе вредных веществ. А следовательно, не требуют утилизации, так как не загрязняют окружающую среду. Внутри колбы КЛЛ содержится небольшое количество ртути. А вредны ли светодиодные лампы для здоровья?

История создания светодиодов

Явление излучения света твердотельным диодом первым обнаружил Генри Раунд, британский экспериментатор. Независимо от него прототип светодиода был получен в 1927 году советским ученым Олегом Владимировичем Лосевым. Работу первого светодиода красного цвета, пригодного для промышленного изготовления, продемонстрировал американский изобретатель Ник Холоньяк в 1962 году.

Но светодиоды далеко не сразу стали использовать для освещения. Этому препятствовал их монохромный спектр излучения.

Принципиально конструкция светодиода мало отличается от обычного диода. В нем также используются свойства p-n-перехода, возникающего на границе соприкосновения полупроводниковых кристаллов разной проводимости. Но, при добавлении определенных добавок в эти кристаллы, при рекомбинации электронов и дырок излучается квант света. Длина волны излучения (то есть, его цвет) зависит от материала этих добавок. Они подбирались экспериментально, поэтому эволюция цвета излучения этих приборов затянулась на годы.

Вслед за изобретением красного светодиода в разное время были изобретены приборы с желтым, зеленым, оранжевым и инфракрасным светом излучения. Но пока их стоимость была относительно высокой, а интенсивность излучения позволяла использовать только для индикаторных приборов или в устройствах управления на ИК-лучах.

Серьезным шагом на пути к светодиодным лампам стало изобретение синего светодиода японскими учеными в 1990 году, удостоенных за это Нобелевской премии. Прибор обладал несомненным преимуществом – он был дешев. До светодиодных источников света оставалось совсем немного.

Принципы свечения светодиодных ламп

Из чего состоит солнечный свет? Это можно увидеть на примере радуги. В ней видимые цветовые составляющие излучения нашего светила различимы невооруженным глазом.

Светодиод не может заменить свет солнца, так как его свечение эквивалентно лишь небольшой части спектра солнечного излучения. Но с изобретением синего светодиода такое стало возможным. Есть два способа, с помощью которых решают эту задачу.

Вспомним принцип работы люминесцентной лампы или КЛЛ. В ней ультрафиолетовое излучение преобразуется в видимый свет с помощью люминофора, покрывающего внутреннюю стенку колбы. Были изобретены люминофоры, реагирующие не только на ультрафиолетовый, но и на синий цвет. Осталось покрыть ими поверхность светодиода – и лампа почти готова.

Второй способ основан на смешении цветов, когда две светящиеся точки разного цвета воспринимаются глазом как излучение совершенно другого оттенка. На этом принципе работают все телевизионные трубки и мониторы. Это оказалось возможным и при использовании светодиодов. Полупроводниковые кристаллы, излучающие красный, зеленый и синий цвета с одинаковой интенсивностью и помещенные близко друг к другу, воспринимаются глазом как источник белого света.

Но этот способ не так уж и прост. Точно получить нужный оттенок в промышленных масштабах — сложная задача. Поэтому метод смешения используется в основном в устройствах с изменяемым пользователем цветом свечения. С помощью излучения красного, зеленого и синего цвета можно получить любой цвет свечения, существующий в природе.

Питание светодиодных ламп

Но светодиод – это еще не лампа. Напряжение сетей электропитания – 220 В. А напряжение, нужное светодиоду для работы — единицы вольт. Мало того, при небольшом его увеличении относительно номинальной величины ток через прибор возрастает многократно. Поэтому для включения светодиодной лампы в сеть потребовалось применить специальное устройство – драйвер.

Лампа состоит из нескольких светодиодов, соединенных последовательно. Драйвер обеспечивает такое напряжение питания этой цепочки, чтобы ток через нее был номинальным. Но при этом переменное напряжение сети выпрямляется, становится постоянным.

Казалось бы, зачем, ведь светодиод как и диод обычный и так пропускает ток только в одном направлении? Но если заставить его работать от переменного напряжения, свет от лампы будет пульсировать в такт с напряжением сети – с частотой 50 Гц. А теперь мы все ближе и ближе подходим к влиянию светодиодных ламп на зрение.

Откуда берутся пульсации света?

Источники света, работающие от сети 50 Гц, пульсируют все, но каждый по-своему.

Пульсации от лампы накаливания сглаживаются из-за того, что ее нить имеет тепловую инерцию. Она не успевает остыть между полупериодами питающего напряжения.

Люминесцентные лампы с обычным дросселем и лампы ДРЛ четко пульсируют с частотой сети. Избавиться от этого можно, запитав соседние лампы от разных фаз сети или сдвинув между ними фазу напряжения при помощи конденсатора.

Пульсации от источников света, имеющие источники питания с преобразованием переменного тока в постоянный, теоретически имеют минимум пульсаций. Это:

  • люминесцентные лампы с полупроводниковыми ПРА (ЭПРА);
  • компактные люминесцентные лампы;
  • светодиодные лампы.

Но радоваться рано: от их пульсаций владелец экономичного источника света вовсе не застрахован. Светодиодные лампы – самый дорогой продукт. И тут в действие вступают законы рынка: больше покупают товары, цена которых ниже. А себе в убыток производители работать не станут.

Удешевление светодиодных ламп возможно только за счет уменьшения количества электронных компонентов в схеме драйвера. За сглаживание пульсаций отвечает электролитический конденсатор, фильтрующий выпрямленное напряжение. С удешевлением драйвера его емкость уменьшается. Может устанавливаться конденсатор худшего качества, очень быстро теряющий свои свойства при работе. А еще он может и вовсе отсутствовать.

Понять, что лампа излучает пульсирующий свет, при ее покупке и в эксплуатации невозможно. Для этого нужны специальные приборы, которые есть даже не во всех СЭС.

Влияние пульсаций на здоровье

А вредны ли пульсирующие светодиодные лампы для здоровья? Да, пульсации света негативно сказываются на самочувствии людей. Они приводят к повышенной утомляемости, воздействуя на фоторецепторные элементы сетчатки. Мы этого не ощущаем, но наши органы зрения пытаются скорректировать полученное изображение так, чтобы оно воспринималось равномерно освещенным, без пульсаций. Естественно, что решать эту задачу в течение длительного времени им непросто, в итоге при постоянном воздействии такого освещения зрение неизбежно начнет ухудшаться.

Этот факт доказан и отечественными, и зарубежными исследователями. Особенно опасно воздействие пульсаций на детский организм, у которого органы зрения еще развиваются и формируются. Наиболее подвержены влиянию этого вредного фактора подростки в возрасте 13-14 лет.

Цветовая температура

Ощущаемый глазом цвет свечения источников света характеризуют параметром, называемый цветовой температурой. Значения этого параметра и из обозначения перекочевали к светодиодным лампам от люминесцентных и КЛЛ, в конструкции которых тоже есть люминофор. Цветовой оттенок источников света тоже влияет на здоровье человека.

Теплый свет почти эквивалентен свету от лампы накаливания. Человеческий организм инстинктивно считает его похожим на свет от солнца во время восхода, и настраивается на активную деятельность. Лампочки именно такого, желтоватого цвета свечения рекомендуются для жилых помещений, они создают ощущение уюта.

Но многие люди все-таки предпочитают использовать лампы белого цвета. Теплый свет мрачноват и создает ощущение нехватки освещенности.

В спектре холодного и дневного света начинается преобладание синих оттенков. Визуально кажется, что осветительные приборы, снабженные такими лампочками, светят ярче.


Но в быту применять лампочки холодного и белого света не рекомендуется. Синий цвет характерен для сумерек, наступающих после заката солнца. Поэтому и настраивает человеческий организм соответствующим образом, готовя ко сну. Длительная работа при освещении с соответствующей цветовой температурой приводит к повешенной утомляемости, потере концентрации. Поэтому эти лампы советуют использовать только для наружного и декоративного освещения.

Что нам скажет медицина?

Вред светодиодных ламп синего спектра излучения изучался и продолжает исследоваться учеными. Отрицательное воздействие его на сетчатку глаза уже доказано.

К примеру, испанские ученые проводили эксперименты с двумя группами одинаковых клеток сетчатки, выращенными в лабораторных условиях в питательной среде. Одна группа, контрольная, не подвергалась излучению и находилась в комфортных для развития условиях. Другую подвергали облучению светодиодами разных спектров свечения. Затем определяли и сравнивали количество погибших клеток в тестовых группах.

Наибольший процент гибели клеток наблюдался при облучении синими светодиодами. Хотя источники света с другими цветовыми температурами вызывали тот же эффект, но в меньшей степени.

Однако сами ученые сделали вывод, что эксперименты нужно продолжать для получения более конкретных данных. Из чего следует сделать вывод, что окончательного заключения, приносят ли светодиодные лампы вред, пока нет. Ведь лабораторные исследования не учитывают тот факт, что клетки сетчатки способны к регенерации. Нужны четкие рекомендации: сколько времени в течение суток человек может находиться и работать под воздействием светодиодного излечения, а сколько – находиться на улице при естественном освещении или спать.

Медики, наблюдающие за учащимися в школьных учреждениях, отмечают снижение зрения у подростков. Но эти данные тоже нельзя четко связать с воздействием освещения, особенно светодиодного. Не стоит забывать, что подавляющее большинство учащихся все свое свободное время проводят за компьютерами. И световое воздействие от их мониторов вполне может оказаться более губительным для зрения, чем освещение школьного класса.

Светодиодные лампочки – относительно молодой вид осветительных приборов. Статистики по воздействию света от них на здоровье глаз накоплено пока недостаточно, а результатов исследований пока мало. Да и качество лампочек, как уже отмечалось, не всегда высокое.

Поэтому в 2010 году вышли дополнения к «Санитарным правилам и нормам», касающихся искусственного и совмещенного освещения. Вот дополнения, коснувшиеся светодиодного освещения:

  • цветовая температура используемых для освещения ламп 2400˚К — 6800˚К;
  • ультрафиолетовое излучение в спектре длин волн 320-400 нм не должно превышать 0,03 Вт/м 2 ;
  • светильники, в которых применяются светодиодные лампочки, должны исключать прямое попадание света на сетчатку глаза (для исключения такого явления, как ослепление);
  • в детских и образовательных учреждениях рекомендуется использовать лампы накаливания и люминесцентные источники света.

Про светодиодные лампы в школах – ни слова. И никак не оговорен тот факт, что люминесцентные лампы создают пульсации светового потока, с которыми требуется серьезная борьба. Полностью лишены этого недостатка только лампы с полупроводниковыми ПРА, выпускаемые серьезными фирмами. Но кто будет покупать в школу дорогое электрооборудование?