Сколько коричневых карликов в окрестностях солнца. Коричневый карлик: звезда или планета? Коричневые звезды

Дэвид Уилкок только что выпустил короткое сообщение, в котором он признается, что теперь верит, что наша Солнечная система, на самом деле, является двойной звездной системой. Если это правда, то значит, что у нашего Солнца есть звезда-компаньон. По Уилкоку, эта другая звезда — коричневый карлик.

Вы можете подумать, если наша солнечная система состоит из двух звезд, то почему мы не видим другую? Хороший вопрос. Ответ заключается в объяснении, что эта звезда-компаньон является коричневым карликом. Это своего рода звезда. Либо она никогда не получала необходимой массы, чтобы зажечь ядерные реакции синтеза и стать обычной звездой, в нашем понимании. Либо она дошла до такой точки, когда термоядерная реакция прекратилась. Коричневые карлики стали описывать недавно, и обычно их сравнивают с Юпитером, и наука в настоящее время обсуждает, следует ли проводить различие между карликовыми звездами и газовыми гигантами.

Две звезды, чтобы быть частью двойной системы, должны вращаться вокруг общего центра тяжести — точки гравитационного равновесия между ними. По-видимому, именно такой сценарий мог бы объяснить некоторые аномалии во внешней части нашей Солнечной системы, которые ученым было всегда сложно объяснять! И если есть коричневый карлик, звезда-компаньон, мы, очевидно, не увидим его, потому что он не горит.

«Мягкое» раскрытие

Знаете ли вы, что астрономы, ученые считают, что наиболее видимые звездные системы являются бинарными? Многие ли это знали. Но в последнее время стало заметно, что многие статьи касаются темы бинарных систем. Соедините это с объявлением, что телескоп НАСА Кеплер показал, что большинство звездных систем, вероятно, имеют планеты, и аргументом будет то, что мы наблюдаем своего рода «мягкое раскрытие» реальности, уже известной элите нашей планеты.
В ходе исследований по этой теме, стало известно, что ученые объявили в этом году, что созвездие Mizar (сообщение Lake Afton Public Observatory) на самом деле не просто двоичная система, а содержит шесть звезд!

Еще одна интересная история, связанная с нашей парной звездой, – появление мема о втором Солнце на YouTube. Многие видео, якобы от всяких разных людей со всех уголков планеты, показывают второй яркий объект в нашем небе. Иногда это видно невооруженным глазом, но во многих случаях это можно увидеть только через фильтр. Большинство из этих видео не оказываются подделкой. Не понятно как они могли появиться. Я пытался также увидеть второй яркий объект в небе. Я пытался блокировать солнце двумя парами очков. В дни, когда облачный покров достаточно плотный, чтобы сделать видимым солнечный диск, не повреждая глаз, я заметил, что он, кажется, одиноким. Но есть еще так много видео, что это явление по-прежнему представляется возможным, если не вероятным. Зададимся вопросом, для чего поддельные видео кто-то создает и выставляет в Интернет? Одним из объяснений может быть то, что кто-то, очень сильный, хочет мягко облегчить коллективное человеческое приятие второго солнца.

Two suns photo courtesy Cameron Wright
December 9, 2012 | Queensland, Australia

Конечно, они, вероятно, не являются подделкой. Я это говорю, не потому, что видео нельзя подделать. Я говорю это потому, что изображение, размещенное чуть выше, представлено на моей собственной страничке facebook другом Камерон Райт из Квинсленда, Австралия. Он сам сделал эту фотографию. Если само небо не является подделкой, конечно. Данные фотографии и видео являются подлинными явлениями, отражающими происходящее. И они сделаны совсем недавно, в течение последних 24 часов!

Дмитрий Вибе,
докт. физ.-мат. наук, зав. отделом физики и эволюции звезд Института астрономии РАН Величайший астроном-наблюдатель Вильям Гершель, создавая в XVIII веке первую карту нашей Галактики, предполагал, что все звезды одинаковы, а различия в их видимом блеске связаны исключительно с разной удаленностью от Солнца. В полной мере осознать несправедливость этого предположения удалось лишь к концу XIX — началу XX века, когда начались массовые определения расстояний до звезд. Современные же представления о звездах сформировались лишь к середине XX века. Конкретно, в 1920 — 1930-е годы выяснилось, что звезды состоят главным образом из водорода и что наиболее подходящим механизмом энерговыделения в звездах являются термоядерные реакции превращения водорода в гелий.

Термоядерные реакции, как следует из самого их названия, требуют высокой температуры, а температура в ядре звезды, где располагается «термоядерный реактор», обеспечивается массой: чем сильнее звезда сжимается под собственным весом, тем сильнее разогреваются ее недра.

Скорость термоядерных реакций очень сильно зависит от температуры, поэтому массивные звезды стремительно расходуют запасы водорода и живут недолго (миллионы или десятки миллионов лет). Звезды же малых масс (порядка солнечной и ниже) относительно холодны и снаружи, и внутри, и потому превращение водорода в гелий в них идет весьма унылыми темпами и может продолжаться десятки и сотни миллиардов лет.

Ответы на очень многие астрономические вопросы зависят от того, как звезды распределены по массам, точнее, по начальным массам, поскольку в процессе эволюции масса звезды так или иначе меняется (чаще в сторону убывания). По современным представлениям, распределение звезд по начальным массам — начальная функция масс (НФМ) — описывается убывающим степенным законом для звезд с массой порядка солнечной и выше и чем-то логнормальным в области меньших масс. У НФМ есть верхний предел (максимальная масса звезд), равный, по-видимому, 100−200 солнечным массам и связанный с тем, что массивные звезды раздувают сами себя собственным излучением.

Ситуация с нижним пределом (минимальная масса) более сложная. Во-первых, маломассивные объекты сложнее обнаруживать и потому существенно сложнее достоверно пересчитать. Во-вторых, переходя в область малых масс, мы рано или поздно сталкиваемся с объектами, массы (= температуры) которых слишком малы для загорания термоядерных реакций. Ничто не запрещает таким объектам образовываться и существовать; они просто не будут звездами.

Отправной точкой в изучении таких субзвездных объектов считаются работы Шива Кумара (Shiv S. Kumar), опубликованные в 1962—1963 годах. В них он указал, что сжатие газового сгустка заканчивается формированием устойчивой конфигурации без загорания термоядерных реакций, если масса сгустка не превосходит 0,07- 0,09 массы Солнца. Сам Кумар называл такие «недозвезды» черными карликами, однако с 1975 года за ними закрепилось другое название — коричневые (или бурые) карлики.

Коричневые карлики оставались гипотетическими объектами до середины 1990-х годов, когда развитие наблюдательной техники наконец достигло уровня, необходимого для обнаружения столь тусклых объектов. Дело в том, что коричневые карлики, так и не обзаведшиеся внутренним источником энергии, светятся лишь за счет накопленного при сжатии тепла. Один из первых открытых коричневых карликов — спутник звезды Gliese 229. S. Kulkarni (Caltech), D. Golimowski (JHU) and NASA. С сайта hubblesite.org Невысокая температура (примерно от 2500 К до сотен К) в сочетании с небольшим размером приводят к очень низкой светимости, да и то только пока карлик находится в относительно юном возрасте. Неудивительно, что первое сообщение о подтвержденном открытии коричневого карлика (Teide 1), опубликованное в сентябре 1995 года, относилось к объекту в молодом звездном скоплении Плеяды.

Сейчас количество известных коричневых карликов перевалило уже за тысячу, а полное их количество в Галактике как минимум сопоставимо с количеством «нормальных» звезд. Причем, если массы первых обнаруженных коричневых карликов были лишь незначительно ниже предела Кумара, то теперь известны субзвездные объекты, по массе уступающие Юпитеру.

Коричневые карлики и экзопланеты

Практически одновременно с открытием коричневых карликов в том же 1995 году было представлено еще одно значимое открытие — первая экзопланета у «нормальной» звезды. Теперь количество известных (и подтвержденных) экзопланет приближается к двум тысячам, и их массы тоже весьма разнообразны. В частности, среди них нередки планеты, массы которых в разы превосходят массу Юпитера. Иными словами, диапазоны масс планет и коричневых карликов существенно перекрываются.

Возникает естественный вопрос: а чем вообще планеты и коричневые карлики отличаются друг от друга? И те и другие имеют сходные (по крайней мере, перекрывающиеся) массы, и те и другие состоят главным образом из водорода, в спектрах атмосфер и тех и других обнаруживаются признаки значительного количества молекул…

Сейчас для разделения субзвездных объектов на планеты и коричневые карлики принят условный массовый порог — 13 масс Юпитера. При массе выше этого предела в объекте на самом раннем этапе его существования все-таки могут короткое время идти термоядерные реакции, но с участием не водорода, а дейтерия. В двойной системе Oph 162 225−240 515 оба компаньона
являются коричневыми карликами,
причем очень маломассивными,
с массами около 7 и 14 масс
Юпитера. С сайта www.eso.org Дело в том, что первый, самый медленный шаг в стандартной протон-протонной цепочке превращения водорода в гелий представляет собой именно формирование дейтерия. Если дейтерий в газе уже есть (а он есть, остался после Большого взрыва), для его превращения в гелий достаточно и менее высокой температуры, поэтому дейтерий способен гореть в объектах существенно меньшей массы. Но, увы, дейтерия мало, и потому эти реакции быстро заканчиваются. Так вот, предельно малое значение массы для загорания дейтерия — именно 13 масс Юпитера. Но понятно, что это разделение ничего не говорит о том, по какому сценарию — «звездному» или «планетному» — образовался объект.

На первый взгляд вопрос о сценарии выглядит надуманным. Казалось бы, разница очевидна: планеты обращаются вокруг звезд, тогда как коричневые карлики представляют собой самостоятельные объекты, по сути, продолжение звездной НФМ в субзвездную область. Однако где гарантия, что «планета» с массой, скажем, 20 масс Юпитера (такие есть) образовалась именно как планета, а не как компонент двойной системы?

С другой стороны, есть и сценарии эволюции планетных систем, в которых некоторые планеты в результате взаимодействия со своими компаньонами выбрасываются из системы и отправляются в свободный полет. То есть теперешняя изоляция «коричневого карлика» с массой порядка массы Юпитера (и такие есть) вовсе не означает, что и родился он тоже в одиночестве.

С образованием коричневых карликов есть еще одна проблема: современные модели звездообразования зачастую предсказывают существенно меньшее количество коричневых карликов, чем их реально наблюдается. Образовать в турбулентном молекулярном облаке очень маломассивный сгусток оказывается не так-то просто. Поэтому в литературе время от времени появляются предположения о «третьем сценарии» формирования коричневых карликов, специфическом только для них.

Согласно одному из предлагаемых вариантов, коричневый карлик начинает свою жизнь как газовый сгусток в молекулярном облаке, но не успевает вырасти до звездного размера, потому что выбрасывается из облака из-за гравитационного взаимодействия с другими сгустками, которые по каким-то причинам росли (набирали массу) быстрее.

Важным признаком того, что коричневые карлики образуются именно по стандартному звездному сценарию, может стать их способность самим быть центрами планетных систем. В настоящее время планеты у коричневых карликов действительно обнаружены — около десятка. Самые массовые методы обнаружения экзопланет (лучевых скоростей и транзитный) с коричневыми карликами не работают; половина планет из этого десятка найдена при помощи микролинзирования, и еще половина была замечена на прямых изображениях.

Исследование протопланетных дисков

Статистика, прямо сказать, не очень богатая, поэтому более прогрессивным представляется другой способ — исследование протопланетных дисков у коричневых карликов. Конечно, не только планеты, но и диски у субзвездных объектов обнаруживать гораздо сложнее, чем у обычных звезд, но это все-таки возможно. Вообще, протопланетные диски у звезд с массой выше предела Кумара -объекты существенно более крупные, чем сами звезды, и потому их довольно часто удается наблюдать как протяженные объекты. Однако косвенные признаки наличия диска можно получить даже в тех случаях, когда разглядеть собственно диск по каким-то причинам невозможно. Во-первых, на существование диска указывает избыточное инфракрасное (ИК) излучение в спектре звезды: это светится не сама звезда, а пыль в диске, нагретая звездным излучением. Во-вторых, признаком наличия диска могут быть эмиссионные линии в спектре звезды (главным образом линии водорода), а также избыточное излучение в ультрафиолетовом диапазоне.

И линии, и ультрафиолетовый избыток указывают на присутствие очень горячего газа, существенно более горячего, чем поверхность звезды. Предполагается, что так проявляет себя газ, падающий на звезду — опять же из диска. По сути, аккреция вещества на звезду в данном случае является признаком ее молодости, точнее, признаком того, что формирование звезды еще не завершилось, а формирование планетной системы либо вовсе еще не началось, либо началось совсем недавно.

Нужно признать, что слово «протопланетный», прилагаемое к диску, есть некоторое забегание вперед: явных признаков образования планет в этих дисках пока никто не видел. Но косвенные свидетельства есть и в этом случае. Например, наблюдения указывают, что пыль в дисках крупнее, чем в родительских молекулярных облаках, а рост пыли как раз и есть первый шаг к образованию планет.

Все эти критерии применимы и к исследованиям коричневых карликов. Правда, находить у них диски по инфракрасному избытку сложнее, поскольку коричневые карлики, более холодные, чем звезды, обладают заметным собственным излучением в инфракрасном диапазоне. В то же самое время их диски, наоборот, более холодны. Иными словами, собственный инфракрасный спектр центрального объекта более ярок, а добавка от диска — менее значительна. Поэтому при выявлении предполагаемых дисков у коричневых карликов наблюдатели стараются по возможности не ограничиваться только обнаружением ИК-избытка, но и дополнять его наблюдениями эмиссионных линий. Таким образом, ИК-избыток указывает на наличие диска, а эмиссионные линии — на то, что этот диск является аккреционным, то есть поставляет вещество на центральный объект.

Конечно, лучше всего наблюдать протопланетные диски и у звезд, и у коричневых карликов на длинных волнах. В инфракрасном диапазоне светится только центральная горячая часть диска, а его более значительная холодная часть излучает в субмиллиметровом и миллиметровом диапазонах. Поэтому достоверно оценить массу и размер диска можно только по длинноволновым данным.

Однако такие наблюдения существенно более сложны, чем наблюдения в оптическом и инфракрасном диапазонах, и даже для дисков у звезд выполнены лишь для нескольких объектов. У коричневых карликов же пространственно разрешенные наблюдения дисков проведены лишь для трех объектов, и делать это на сегодняшний день можно при помощи считаных инструментов, которые к тому же не жалуются на недостаток желающих на них наблюдать.

Тем не менее имеющиеся данные позволяют сделать важные выводы. Определив по инфракрасному избытку количество объектов с дисками, по ультрафиолетовому избытку и интенсивности эмиссионных линий — темп аккреции (выпадения вещества из диска на центральный объект), по наблюдениям в миллиметровом и субмиллиметровом диапазонах — массы и размеры дисков, можно определить место коричневых карликов в общей картине звездо- и планетообразования. И это место оказывается рядом со звездами.

Начнем с того, что доля коричневых карликов с дисками такая же, как и доля звезд с дисками: примерно половина. Далее, массы дисков коричневых карликов вписываются (хотя и с большим разбросом) в общую закономерность, ранее выведенную для звезд, — масса диска составляет примерно 1% от массы центрального объекта.

Темп дисковой аккреции и на звезды, и на коричневые карлики также подчиняется общей закономерности, будучи пропорциональным квадрату массы центрального объекта. Структура и размеры дисков коричневых карликов в тех редких случаях, когда их удается определить, также не выглядят чем-то из ряда вон выходящим. Диск у коричневого карлика OTS 44 в представлении художника. NASA/JPL-Caltech/T. Pyle (SSC). С сайта www.spitzer.caltech.edu Заключение

В общем, по крайней мере в отношении параметров дисков звёзды и коричневые карлики кажутся представителями единого населения с общей историей образования. Причем этот вывод подтверждается не только для более массивных карликов, но и для карликов планетных масс, порядка 10 масс Юпитера. Это указывает, что даже самые мелкие коричневые карлики рождаются самостоятельно.

Со сценарием выброса из области звездообразования всё не так ясно. С одной стороны, кажется, что такое драматическое событие должно было бы оставить коричневый карлик без диска. С другой стороны, модели показывают, что маленький диск при этом может уцелеть. Правда, у всех трех дисков, размеры которых были оценены при помощи ALMA, эти размеры оказались вполне солидными, от 66 до 139 а.е., поболе даже и Солнечной системы. Но, может быть, эти диски нетипичны?

Что мы сами пытаемся сделать: поскольку умеем моделировать структуру дисков и их молекулярный состав, логично попробовать найти между дисками коричневых карликов и дисками «нормальных» звезд какие-то обнаружимые отличия. Правда, проверить эти отличия в наблюдениях будет нелегко… Даже в «больших» дисках количество обнаруженных молекул пока едва перевалило за десяток, а в дисках у коричневых карликов и вовсе найдены только вода, ацетилен, углекислый газ и изомеры HCN и HNC. Однако есть надежда, что будущие наблюдения на ALMA позволят существенно расширить этот список.

Несмотря на свое название, коричневый карлик не совсем коричневый. Эти объекты имеют массы в 12 раз большие, чем у . И могут достигать половины массы Солнца. Они излучают свет сами по себе. Но обычно не очень сильно. Самые большие и самые молодые из них довольно горячи, и излучают много света и тепла. Издалека эти объекты неотличимы своих звездных сородичей — красных карликов. Самые маленькие и самые старые из них, напротив, едва заметны. Они излучают только в инфракрасной части спектра.

Коричневый карлик — откуда энергия?

В среднем средний коричневый карлик слабо светится тусклыми пурпурными оттенками. Это делает эти объекты довольно интересными в семье космических тел.

Но в отличие от звезд, коричневые карлики светятся не от тепла термоядерных реакций, бушующих в их недрах. Их свет и тепло — это просто остатки энергии их первоначального формирования. Эти объекты были рождены из коллапсирующих облаков газа и пыли. Также, как и звезды, только имеют меньшие размеры. Гравитационный коллапс высвободил огромное количество энергии. Но энергия попала в падающий материал, и оказалась заперта внутри на десятки миллионов лет. И теперь она медленно уходит в космос в виде теплого света.

По мере того, как это тепло уходит, коричневый карлик продолжает тускнеть. Он превращается из ярко — красного в пятнистый и пурпурный объект, видимый только в инфракрасном диапазоне. Чем больше была масса подобного объекта при его рождении, тем больше тепла он смог заманить в свою ловушку. И тем дольше он может имитировать настоящую звезду. Но конечная судьба одинакова для каждого коричневого карлика, независимо от его родословной.

Гелий — 3

Коричневый карлик вполне может быть классифицирован как просто странная разновидность очень больших . В конце концов, планеты тоже постоянно охлаждаются, поскольку стареют. И у них нет новых источников энергии, которые будут подогревать их в течение миллиардов или триллионов лет.

Но большинство коричневых карликов играют в особую игру. Требуется определенный порог по массе (примерно в 80 раз больше, чем у Юпитера), чтобы достичь огромных температур и давлений в ядре объекта, которые необходимы для слияния водорода в гелий. Именно это необходимо для того, чтобы космический объект мог считать себя звездой. Но есть гораздо более низкий порог, примерно в 13 раз больший массы Юпитера, при котором может происходить другой вид синтеза.

В этой гораздо более прохладной обстановке дейтерий (который представляет собой один протон и один нейтрон, склеенные вместе в ядре) может ударить свободный протон. Эта реакция превратит дейтерий в гелий-3, и высвободит немного энергии. Обычные звезды проходят краткую фазу горения дейтерия, после которой они достаточно нагреваются. Но коричневые карлики могут поддерживать этот процесс достаточно длительное время. Но так никогда и не переключаются на полномасштабный термоядерный синтез.

Все очень быстро

Однако это не длится вечно. Самые большие коричневые карлики расходуют весь свой дейтерий за несколько миллионов лет. Причина этого в том, что подобные тела не разделены на отдельные слои.

В звездах, подобных , есть плотное ядро, состоящее из водорода и гелия. Оно окружено слоем плазмы, в котором преобладают лучистые энергии. И этот слой окружен неким «кипящим супом». Но у самых маленьких звезд и коричневых карликов ядра, как такового, нет. У них есть только одна конвекционная оболочка, простирающаяся от поверхности до центра, способная транспортировать материал внутрь и наружу. Из самых внутренних областей до поверхности объекта и обратно.

Таким образом, любой дейтерий, который имеет коричневый карлик, в конечном итоге окажется втянутым в его в центр. Где и превратится в гелий-3. (В объекте со слоями некоторое количество дейтерия может оставаться в каких — то местах без изменения).

Что же происходит с маленькими коричневыми карликами? Они просто постепенно остывают. Их внутренняя температура находится ниже порога, необходимого для поддержания реакции. Энергия дейтериевых реакций им недоступна.

Определение размеров

Коричневые карлики рождаются как звезды, некоторое время излучают тепло, а иногда даже синтезируют элементы в своих недрах. Итак, есть ли причина назвать их звездами?

Коричневый карлик — объект маленький. Очень маленький для звезды. Конечно, эти объекты больше Юпитера. Но к настоящему дню в космосе обнаружено уже много объектов, которые больше Юпитера. Красный карлик не намного крупнее обычной — гиганта.

Звездам присуще одна особенность — это реакция термоядерного синтеза, происходящие в их ядрах. Высвобождаемые энергии постоянно конкурируют с внутренней гравитацией, пытаясь расширить внешние слои звезды.

Но, как мы знаем, коричневые карлики не имеют таких свойств. И в отличие от планет, у них нет скалистых ядер или ледяных мантий. Все, что у них осталось, — это экзотическая квантовая сила, известная как давление вырождения . Она определяет, сколько частиц может поместиться в определенном объеме. Коричневые карлики полностью поддерживаются давлением вырождения, поэтому они имеют минимально возможный размер для своей массы.

Граница между большими планетами и маленькими звездами не просто размыта. Существует совершенно отдельный класс объектов. Они обладают одновременно свойствами как планет, так и звезд. Но при этом не являются ни тем, ни другим.

Можно сказать, что коричневые карлики — это подростки небесного царства.

SDSS J010448.46+153501.8 (отмечен крестом) и его ближайшие окрестности

Международная группа астрономов благодаря серии наблюдений на Очень большом телескопе (VLT) обнаружила рекордно массивный коричневый карлик - субзвездный объект, массы которого недостаточно для термоядерных реакций слияния протонов. Авторы отмечают необычный состав карлика - он почти целиком (99,99 процента) состоит из водорода и гелия. Находка позволяет уточнить, какие звезды могли образовываться в ранней Вселенной. Исследование опубликовано в журнале Monthly Notices of the Royal Astronomical Society.

Коричневые карлики - особый класс объектов, масса которых гораздо больше, чем у Юпитера (по меньшей мере в 13 раз), но недостаточна для поддержания термоядерного горения водорода, характерного для «больших» звезд. Тем не менее в них протекают термоядерные реакции с участием ядер дейтерия и лития. Из-за того что светимость коричневых карликов постоянно уменьшается их относят к промежуточным объектам между газовыми гигантами и звездами. Типичные температуры на их поверхности не превышают 2000 кельвинов, а иногда составляют всего лишь 500-600 кельвинов (200-300 градусов Цельсия).

Подобно звездам, коричневые карлики образуются в результате гравитационного коллапса облака газа. Ранее считалось, что в условиях ранней Вселенной коллапс газа мог приводить лишь к объектам с массой порядка ста масс Солнца - так называемых звезд . Однако недавно астрофизики сформулировали ряд гипотез о том, как могли возникать и менее массивные светила. Особенность таких звезд - очень малая металличность (содержание элементов тяжелее гелия). В ходе обзоров уже были обнаружены соответствующие бело-желтые и желтые карлики с массами больше половины массы Солнца (500 масс Юпитера).

Авторы работы указали на первого представителя неметалличных коричневых карликов, SDSS J010448.46+153501.8, расположенного в гало Млечного Пути. Эта звезда была известна ранее и уже классифицировалась как коричневый карлик. Ученые обратили внимание на то, что ее спектр несколько отличается от типичных представителей этого класса и провели сеанс наблюдений с помощью Очень большого телескопа - системы из четырех 8,2-метровых телескопов, расположенных в Чили.

Астрономы сопоставили спектр высокого разрешения с моделями и обнаружили, что карлик обладает очень низкой металличностью. Массовая доля элементов тяжелее гелия в нем в 250 раз меньше, чем в Солнце. Возраст карлика составляет примерно 10 миллиардов лет, а масса лишь на два процента меньше требуемой до запуска термоядерного горения водорода - около 90 масс Юпитера.

Ранее астрономы в данных «Кеплера» необычную активность одного из коричневых карликов - время от времени он вспыхивал, становясь ярче Солнца. Объяснить поведение ученым не удалось. Интересно, что как и у обычных звезд, у коричневых карликов иногда экзопланеты. Известен ряд систем, в которых коричневые карлики вокруг массивных объектов и даже двойных звезд.

Владимир Королёв

Чем обширнее становятся теоретические знания и технические возможности ученых, тем больше открытий они совершают. Казалось бы, уже все объекты космоса известны и необходимо только объяснить их особенности. Однако Вселенная каждый раз при возникновении такой мысли у астрофизиков преподносит им очередной сюрприз. Часто, впрочем, такие новшества бывают предсказаны теоретически. В число подобных объектов входят коричневые карлики. До 1995 года они существовали только «на кончике пера».

Давайте знакомиться

Коричневые карлики — звезды довольно необычные. Все основные их параметры сильно отличны от характеристик привычных для нас светил, впрочем, есть и сходство. Строго говоря, коричневый карлик — субзвездный объект, он занимает промежуточное положение между собственно светилами и планетами. Эти имеют сравнительно небольшую массу — от 12,57 до 80,35 от аналогичного параметра Юпитера. В их недрах, как и в центрах других звезд, осуществляются термоядерные реакции. Отличие коричневых карликов в крайне незначительной роли водорода в этом процессе. В качестве топлива такие звезды используют дейтерий, бор, литий и бериллий. «Горючее» сравнительно быстро заканчивается, и коричневый карлик начинает остывать. После завершения этого процесса он становится планетоподобным объектом. Таким образом, коричневые карлики — звезды, никогда не попадающие на главную последовательность диаграммы Герцшпрунга—Рассела.

Невидимые странники

Эти интересные объекты отличаются еще несколькими примечательными характеристиками. Они представляют собой блуждающие звезды, не связанные с какой-либо галактикой. Теоретически подобные космические тела могут бороздить просторы космоса на протяжении многих миллионов лет. Однако одно из самых их значительных свойств — практически полное отсутствие излучения. Заметить такой объект без использования специальной аппаратуры невозможно. Подходящего оборудования у астрофизиков не было на протяжении достаточно длительного периода.

Первые открытия

Наиболее сильное излучение коричневых карликов приходится на инфракрасную спектральную область. Поиски таких следов увенчались успехом в 1995 году, когда был открыт первый подобный объект, Тейде 1. Он относится к спектральному классу М8 и располагается в скоплении Плеяд. В этом же году на расстоянии 20 от Солнца была обнаружена еще одна такая звезда, Gliese 229B. Она вращается вокруг красного карлика Gliese 229А. Открытия начали следовать одно за другим. На сегодняшний день известно более сотни коричневых карликов.

Отличия

Коричневые карлики непросто идентифицировать из-за их схожести по разным параметрам с планетами и легкими звездами. По своему радиусу они приближаются в той или иной степени к Юпитеру. Примерно одинаковая величина этого параметра сохраняется для всего диапазона масс коричневых карликов. В таких условиях становится крайне непросто отличить их от планет.

Кроме того, далеко не все карлики этого типа способны поддерживать Самые легкие из них (до 13 настолько холодны, что в их недрах невозможны даже процессы с использованием дейтерия. Наиболее массивные очень быстро (в масштабах космоса — за 10 млн лет) остывают и также становятся неспособными к поддержанию термоядерных реакций. Ученые для отличия коричневых карликов используют два основных способа. Первый из них — это измерение плотности. Коричневые карлики характеризуются примерно одинаковыми значениями радиуса и объема, а потому космическое тело с массой 10 Юпитеров и выше, вероятнее всего, относится к этому типу объектов.

Второй способ — обнаружение рентгеновского и Наличием такой заметной характеристики не могут похвастаться только коричневые карлики, температура которых опустилась до планетарного уровня (до 1000 К).

Способ отличия от легких звезд

Светило с небольшой массой — еще один объект, от которого бывает непросто отличить коричневый карлик. Что такое звезда? Это термоядерный котел, где постепенно сгорают все легкие элементы. Один из них — литий. С одной стороны, в недрах большинства звезд он достаточно быстро заканчивается. С другой — для реакции с его участием требуется сравнительно низкая температура. Получается, что объект с литиевыми линиями в спектре, вероятно, принадлежит к классу коричневых карликов. У этого метода есть свои ограничения. Литий часто присутствует в спектре молодых звезд. Кроме того, коричневые карлики могут за период в полмиллиарда лет исчерпать все запасы этого элемента.

Отличительным признаком может быть и метан. На заключительных этапах жизненного цикла коричневый карлик — звезда, температура которой позволяет накопить внушительное его количество. Другие светила не могут остыть до такого состояния.

Для различия коричневых карликов и звезд измеряют и их яркость. Светила тускнеют в конце своего существования. Карлики остывают всю «жизнь». На завершающих этапах они становятся настолько темными, что перепутать их со звездами невозможно.

Коричневые карлики: спектральный класс

Температура поверхности описываемых объектов изменяется в зависимости от массы и возраста. Возможные значения находятся в диапазоне от планетарных до характерных для наиболее холодных звезд класса М. По этим причинам для коричневых карликов первоначально было выделено два дополнительных спектральных типа — L и Т. Кроме них, в теории существовал и класс Y. На сегодняшний день его реальность подтверждена. Остановимся на характеристиках объектов каждого из классов.

Класс L

Звезды, относящиеся к первому типу из названных, отличаются от представителей предыдущего класса М присутствием полос поглощения не только оксида титана и ванадия, но и гидридов металла. Именно этот признак позволил выделить новый класс L. Также в спектре некоторых коричневых карликов, относящихся к нему, обнаружили линии щелочных металлов и йода. К 2005 году было открыто 400 подобных объектов.

Класс Т

Т-карлики характеризуются наличием в ближнем инфракрасном диапазоне полос метана. Аналогичные свойства ранее были обнаружены только у а также спутника Сатурна Титана. На смену гидридам FeH и CrH, характерным для L-карликов, в Т-классе приходят щелочные металлы, такие как натрий и калий.

По предположениям ученых подобные объекты должны обладать сравнительно малой массой — не больше 70 масс Юпитера. Коричневые Т-карлики по многим параметрам схожи с газовыми гигантами. Характерная для них температура поверхности изменяется в диапазоне от 700 до 1300 К. Если когда-то в объектив камеры попадут такие коричневые карлики, фото будет демонстрировать объекты розовато-синего цвета. Такой эффект связан с влиянием спектров натрия и калия, а также молекулярных соединений.

Класс Y

Последний спектральный класс долгое время существовал лишь в теории. Температура поверхности подобных объектов должна быть ниже 700 К, то есть 400 ºС. В видимом диапазоне не обнаруживаются такие коричневые карлики (фото сделать не получится совсем).

Однако в 2011 году американские астрофизики объявили об открытии нескольких подобных холодных объектов с температурой от 300 до 500 К. Один из них, WISE 1541-2250, находится на расстоянии 13,7 световых лет от Солнца. Другой, WISE J1828+2650, характеризуется температурой поверхности в 25 ºС.

Двойник солнца — коричневый карлик

Рассказ о столь интересных будет неполным, если не упомянуть о «Звезде смерти». Так называют гипотетически существующий двойник Солнца, по предположениям некоторых ученых располагающийся на расстоянии 50-100 астрономических единиц от него, за пределами облака Оорта. По мнению астрофизиков, предполагаемый объект составляет пару нашему светилу и проходит мимо Земли каждые 26 млн лет.

Гипотеза связана с предположением палеонтологов Дэвида Раупа и Джека Сепковски о периодическом массовом вымирании биологических видов на нашей планете. Высказано оно было в 1984 году. В целом теория довольно спорная, однако есть и доводы в ее пользу.

«Звезда смерти» — одно из вероятных объяснений таких вымираний. Подобное предположение одновременно возникло у двух разных групп астрономов. Согласно их расчетам, двойник Солнца должен двигаться по сильно вытянутой орбите. При сближении с нашим светилом она возмущает кометы, в большом количестве «населяющие» облако Оорта. В результате увеличивается количество их столкновений с Землей, что и приводит к гибели организмов.

«Звезда смерти», или Немезида, как еще ее называют, может быть коричневым, белым или красным карликом. На сегодняшний день, правда, подходящих на эту роль объектов обнаружено не было. Высказываются предположения, что в зоне облака Оорта располагается пока неизвестная планета-гигант, которая оказывает воздействие на орбиты комет. Она притягивает к себе ледяные глыбы, предотвращая тем самым их возможное столкновение с Землей, то есть действует совсем не так, как гипотетическая «Звезда смерти». Впрочем, доказательств существования планеты Тюхе (то есть сестры Немезиды) пока тоже нет.

Коричневые карлики для астрономов - сравнительно новые объекты. Еще массу сведений о них предстоит получить и проанализировать. Уже сегодня предполагается, что такие объекты могут быть компаньонами многих известных звезд. Трудности исследования и обнаружения карликов этого типа задают новую высокую планку для научного оборудования и теоретического осмысления.