Системы уравнений с параметром. Линейные уравнения с параметром Параметром является и то что

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О ; если значения параметра а будут больше одного, то уравнение будет иметь два корня.

Остались вопросы? Не знаете, как решать уравнения с параметром?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При каких значениях параметра $a$ неравенство ${}-x^2 + (a + 2)x - 8a - 1 > 0$ имеет хотя бы одно решение?

Решение

Приведем данное неравенство к положительному коэффициенту при $x^2$:

${}-x^2 + (a + 2)x - 8a - 1 > 0 \quad \Leftrightarrow \quad x^2 - (a + 2)x + 8a + 1 < 0 .$

Вычислим дискриминант: $D = (a + 2)^2 - 4(8a + 1) = a^2 + 4a + 4 - 32a - 4 = a^2 - 28a$. Чтобы данное неравенство имело решение, необходимо, чтобы хотя бы одна точка параболы лежала ниже оси $x$. Так как ветви параболы направлены вверх, то для этого нужно, чтобы квадратный трёхчлен в левой части неравенства имел два корня, то есть его дискриминант был положительным. Мы приходим к необходимости решить квадратное неравенство $a^2 - 28a > 0$. Квадратный трехчлен $a^2 - 28a$ имеет два корня: $a_1 = 0$, $a_2 = 28$. Поэтому неравенству $a^2 - 28a > 0$ удовлетворяют промежутки $a \in (-\infty; 0) \cup (28; + \infty)$.

Ответ. $a \in (-\infty; 0) \cup (28; + \infty)$.

При каких значениях параметра $a$ уравнение $(a-2)x^2-2ax+a+3=0$ имеет хотя бы один корень, и при этом все корни положительны?

Решение

Пусть $a=2$. Тогда уравнение принимает вид ${} - 4x +5 = 0$ , откуда получаем, что $x=\dfrac{5}{4}$ - положительный корень.

Пусть теперь $a\ne 2$. Получается квадратное уравнение. Определим сначала, при каких значениях параметра $a$ данное уравнение имеет корни. Нужно, чтобы его дискриминант был неотрицателен. То есть:

$ D = 4a^2 - 4(a-2)(a+3) ={} -4a+24\geqslant 0\Leftrightarrow a\leqslant 6.$

Корни по условию должны быть положительны, следовательно, из теоремы Виета получаем систему:

$ \begin{cases}x_1 + x_2 = \dfrac{2a}{a - 2}>0,\\ x_1x_2 = \dfrac{a + 3}{a - 2}> 0,\\a\leqslant 6\end{cases} \quad \Leftrightarrow \quad \begin{cases}a\in(- \infty;0)\cup(2; +\infty), \\ a\in(- \infty;-3)\cup(2; +\infty), \\ a\in(-\infty;6] \end{cases}\quad\Leftrightarrow \quad a\in(-\infty;-3)\cup(2;6]. $

Объединяем ответы, получаем искомое множество: $a\in(-\infty;-3)\cup$.

Ответ. $a\in(-\infty;-3)\cup$.

При каких значениях параметра $a$ неравенство $ax^2 + 4ax + 5 \leqslant 0$ не имеет решений?

Решение

  1. Если $a = 0$, то данное неравенство вырождается в неравенство $5 \leqslant 0$ , которое не имеет решений. Поэтому значение $a = 0$ удовлетворяет условию задачи.
  2. Если $a > 0$, то график квадратного трехчлена в левой части неравенства - парабола с ветвями, направленными вверх. Вычислим $\dfrac{D}{4} = 4a^2 - 5a$. Неравенство не имеет решений, если парабола расположена выше оси абсцисс, то есть когда квадратный трёхчлен не имеет корней ($D < 0$). Решим неравенство $4a^2 - 5a < 0$. Корнями квадратного трёхчлена $4a^2 - 5a$ являются числа $a_1 = 0$ и $a_2 = \dfrac{5}{4}$, поэтому $D < 0$ при $0 < a < \dfrac{5}{4}$. Значит, из положительных значений $a$ подходят числа $a \in \left(0; \dfrac{5}{4}\right)$.
  3. Если $a < 0$, то график квадратного трехчлена в левой части неравенства - парабола с ветвями, направленными вниз. Значит, обязательно найдутся значения $х$, для которых трёхчлен отрицателен. Следовательно, все значения $a < 0$ не подходят.

Ответ. $a \in \left$ лежит между корнями, поэтому корней должно быть два (значит, $a\ne 0$). Если ветви параболы $y = ax^2 + (a + 3)x - 3a$ направлены вверх, то $y(-1) < 0$ и $y(1) < 0$; если же они направлены вниз, то $y(-1) > 0$ и $y(1) > 0$.

Случай I. Пусть $a > 0$. Тогда

$\left\{ \begin{array}{l} y(-1)=a-(a+3)-3a=-3a-3<0 \\ y(1)=a+(a+3)-3a=-a+3<0 \\ a>0 \end{array} \right. \quad \Leftrightarrow \quad \left\{ \begin{array}{l} a>-1 \\ a>3 \\ a>0 \end{array} \right.\quad \Leftrightarrow \quad a>3.$

То есть в этом случае получается, что подходят все $a > 3$.

Cлучай II. Пусть $a < 0$. Тогда

$\left\{ \begin{array}{l} y(-1)=a-(a+3)-3a=-3a-3>0 \\ y(1)=a+(a+3)-3a=-a+3>0 \\ a<0 \end{array} \right.\quad \Leftrightarrow \quad \left\{ \begin{array}{l} a<-1 \\ a<3 \\ a<0 \end{array} \right.\quad \Leftrightarrow \quad a<-1.$

То есть в этом случае получается, что подходят все $a < -1$.

Ответ. $a\in (-\infty ;-1)\cup (3;+\infty)$

Найдите все значения параметра $a$, при каждом из которых система уравнений

$ \begin{cases} x^2+y^2 = 2a, \\ 2xy=2a-1 \end{cases} $

имеет ровно два решения.

Решение

Вычтем из первого второе: $(x-y)^2 = 1$. Тогда

$ \left[\begin{array}{l} x-y = 1, \\ x-y = -1 \end{array}\right. \quad \Leftrightarrow \quad \left[\begin{array}{l} x = y+1, \\ x = y-1. \end{array}\right. $

Подставляя полученные выражения во второе уравнение системы, получаем два квадратных уравнения: $2y^2 + 2y - 2a + 1 = 0$ и $2y^2 - 2y - 2a + 1 =0$. Дискриминант каждого из них равен $D = 16a-4$.

Заметим, что не может получиться так, что пара корней первого из квадратных уравнений совпадает с парой корней второго квадратного уравнения, так как сумма корней первого равна $-1$, а второго 1.

Значит, нужно, чтобы у каждого из этих уравнений было по одному корню, тогда у исходной системы их будет два решения. То есть $D = 16a - 4 = 0$.

Ответ. $a=\dfrac{1}{4}$

Найдите все значения параметра $a$, при каждом из которых уравнение $4x-|3x-|x+a||=9|x-3|$ имеет два корня.

Решение

Перепишем уравнение в виде:

$ 9|x-3|-4x+|3x-|x+a|| = 0. $

Рассмотрим функцию $f(x) = 9|x-3|-4x+|3x-|x+a||$.

При $x\geqslant 3$ первый модуль раскрывается со знаком плюс, и функция принимает вид: $f(x) = 5x-27+|3x-|x+a||$. Очевидно, что при любом раскрытии модулей в итоге будет получаться линейная функция с коэффициентом $k\geqslant 5-3-1=1>0$, то есть эта функция на данном промежутке неограниченно возрастает.

Рассмотрим теперь промежуток $x<3$. В этом случае первый модуль раскрывается с минусом, и функция принимает следующий вид: $f(x) = - 13x+27+|3x-|x+a||$. При любом раскрытии модулей в итоге будет получаться линейная функция с коэффициентом $k\leqslant - 13+3+1 = - 9<0$, то есть на этом промежутке функция убывает.

Итак, мы получили, что $x=3$ - точка минимума данной функции. А это означает, что для того чтобы у исходного уравнения было два решения, значение функции в точке минимума должно быть меньше нуля. То есть имеет место неравенство: $f(3)<0$.

$ 12-|9-|3+a||>0 \quad \Leftrightarrow \quad |9-|3+a|| < 12 \quad \Leftrightarrow \quad -12 < 9-|3+a| < 12 \quad \Leftrightarrow \quad$

$\Leftrightarrow\quad |3+a| < 21 \quad \Leftrightarrow \quad - 21 < 3+a < 21 \quad \Leftrightarrow \quad -24

Ответ. $a \in (-24; 18)$

При каких значениях параметра $a$ уравнение $5^{2x}-3\cdot 5^x+a-1=0$ имеет единственный корень?

Решение

Сделаем замену: $t = 5^x > 0$. Тогда первоначальное уравнение принимает вид квадратного уравнения: $t^2-3t+a-1 =0$. Исходное уравнение будет иметь единственный корень в том случае, если у данного уравнения будет один положительный корень либо два корня, один из которых положительный, другой - отрицательный.

Дискриминант уравнения равен: $D = 13-4a$. Один корень это уравнение будет иметь в том случае, если полученный дискриминант окажется равным нулю, то есть при $a = \dfrac{13}{4}$. При этом корень $t=\dfrac{3}{2} > 0$, поэтому данное значение $a$ подходит.

Если есть два корня, один из которых положителен, другой - неположителен, то $D = 13-4a > 0$, $x_1+x_2 = 3 > 0$ и $x_1x_2 = a - 1 \leqslant 0$.

То есть $a\in(-\infty;1]$

Ответ. $a\in(-\infty;1]\cup\left\{\dfrac{13}{4}\right\}$

Найдите все значения параметра $a$, при которых система

$ \begin{cases}\log_a y = (x^2-2x)^2, \\ x^2+y=2x\end{cases} $

имеет ровно два решения.

Решение

Преобразуем систему к следующему виду:

$ \begin{cases} \log_a y = (2x-x^2)^2, \\ y = 2x-x^2. \end{cases} $

Поскольку параметр $a$ находится в основании логарифма, на него накладываются следующие ограничения: $a>0$, $a \ne 1$. Поскольку переменная $y$ является аргументом логарифма, то $y > 0$.

Скомбинировав оба уравнения системы, переходим к уравнению: $\log_a y = y^2$. В зависимости от того, какие значения принимает параметр $a$, возможны два случая:

  1. Пусть $0 < a < 1$. В этом случае функция $f(y) = \log_a y$ убывает на области определения, а функция $g(y)=y^2$ возрастает в той же области $y > 0$. Из поведения графиков очевидно, что корень уравнения один, при этом он меньше 1. Второе уравнение системы и вся система в целом имеют, следовательно, два решения, в силу того что дискриминант уравнения $ x^2-2x+y = 0$ при $0
  2. Пусть теперь $a > 1$. В этом случае функция $f(y)=\log_a y \leqslant 0$ при $y < 1$, а функция $g(y) = y^2 > 0$ при тех же $y$. Значит, если решения и есть, то только при $y > 1$, но второе уравнение системы решений иметь не будет, так как дискриминант уравнения $x^2 - 2x + y = 0$ при $y > 1$ отрицателен.

Ответ. $a\in(0;1)$

Рассмотрим случай, когда $a > 1$. Так как при больших по модулю значениях $t$ график функции $f(t) = a^t$ лежит выше прямой $g(t) = t$, то единственная общая точка может быть только точкой касания.

Пусть $t_0$ - точка касания. В этой точке производная к $f(t) = a^t$ равняется единице (тангенс угла наклона касательной), кроме того, значения обоих функций совпадают, то есть имеет место система:

$ \begin{cases} a^{t_0}\ln a = 1, \\ a^{t_0} = t_0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} a^{t_0} = \dfrac{1}{\ln a}, \\ a^{\tau} = \tau \end{cases} $

Откуда $t_0 = \dfrac{1}{\ln a}$.

$ a^{\frac{1}{\ln a}}\ln a = 1 \quad \Leftrightarrow \quad a^{\log_a e} =\frac{1}{\ln a} \quad \Leftrightarrow \quad a = e^{\frac{1}{e}}. $

При этом других общих точек у прямой и показательной функции очевидно нет.

Ответ. $a \in (0;1] \cup \left\{e^{e^{-1}}\right\}$