Какие перегрузки испытывает космонавт при старте ракеты. Что происходит с телом человека при полете в космос? Перегрузки в авиации

Космонавт, одетый в тяжелый и неудобный скафандр, на минутку остановился у люка, ведущего внутрь космического корабля, оглянулся на стоящую внизу толпу провожающих, поднял руку в прощальном приветствии и исчез в темном отверстии своего отсека. Он удобно уселся в кресле из пористого, мягкого, пластического материала, закрепил ремни, подсоединил контакты скафандра к общей сети сигнальной проводки корабля и нажал одну из кнопок на щите управления, давая сигнал готовности к радиоприему. Через минуту он услышал голос командующего полетом:

Все в порядке, осталось еще несколько минут! - Космонавт включил общую сеть радиовещания и услышал голос радиокомментатора, который сообщал подробности подготовки к старту и красочно описывал предпусковые эмоции и настроения. Космонавт еще раз вспомнил сцены прощания с родными и друзьями, с учеными-руководителями космических исследований.

Объявляю готовность номер один! - внезапно раздался в гермошлемофоне голос командующего. После этого начался столь знакомый всем космонавтам волнующий отсчет, каждая цифра которого несла с собой все увеличивающуюся напряженность ожидания.

Внимание, внимание, внимание! Десять… девять… восемь… семь… шесть… пять… четыре… три… два… один… Пуск!

Кабину космонавта пронзила сначала вибрация, приходящая волнами откуда-то снизу; потом раздался приглушенный гром, который быстро превратился в протяжный непрерывный грохот. Из-под дна ракеты показалась длинная струя огненных молний, и ее огромный корпус, среди дыма и грохота, медленно отделился от земли, постепенно увеличивая скорость движения.

В то время как все провожающие на космодроме, стараясь проследить за полетом корабля, все выше поднимали головы, в кабине начались ответственные для космонавта минуты.

Перегрузка нарастает! - доносил он по радио. - Все в порядке, приборы действуют исправно! - Это были последние слова, которые космонавту удалось произнести без особого труда, потому что вдруг какая-то мощная сила прижала его тело к креслу. Огромная тяжесть навалилась на грудь так, что космонавт не мог сделать ни одного глотка воздуха. Казалось, еще немного, и он будет раздавлен. Ноги и руки отяжелели, стали будто свинцовыми, мускулы лица искривились и подались назад, глаза, словно два шарика, глубоко втиснулись в черепную коробку.

Космонавт пытался еще сказать что-то в микрофон, но - безуспешно. С его губ срывалось только непонятное бормотание. Отказавшись от попыток разговора, космонавт сосредоточился на своих переживаниях, старался оказать сопротивление мощной силе, глотнуть устами воздух.

Внезапно он почувствовал резкое облегчение.

Конец работы двигателя первой ступени ракеты, - пронеслось в его голове.

Но это был только мгновенный перерыв в работе двигателей. Как только отделилась первая ступень ракеты, включились двигатели второй ступени.



Скорость снова стала нарастать, а с ней увеличилась нагрузка, тело космонавта снова вдавилось в подушки кресла. Через несколько минут иссякло горючее в двигателях второй ступени ракеты, наступил короткий перерыв, после чего заработали двигатели третьей ступени. И хотя тело еще с огромным трудом преодолевало нагрузку, в голове космонавта появилась мысль о скором конце испытания. Он знал, что двигатели третьей ступени должны работать очень короткое время, и через несколько минут - конец перегрузкам!

Так и случилось. Через девяносто секунд двигатели прекратили работу, и наступила внезапная тишина.

Переход был настолько резким и быстрым, что ни тело, ни мысль космонавта не успели к нему подготовиться. Сердце колотилось в груди, грудная клетка быстро вздымалась и опускалась, космонавт хватал воздух открытым ртом и часто, неглубоко дышал. Но вдруг все прошло.

* * *

Уфф! - глубоко и с чувством облегчения вздохнул космонавт. Первая часть полета - закончена. Он включил микрофон и, четко выделяя слоги, сказал:

Вышел на орбиту. Все оборудование и приборы работают бесперебойно. Самочувствие хорошее.

Мы попытались описать обыкновенный, рядовой старт космонавта в космос, когда задача ограничивается только лишь орбитальным полетом вокруг Земли. Такой старт все же представляет для человеческого организма тяжелое испытание из-за действия силы ускорения.

Что же это за сила?

Как ее измерить?

Представим себе на минуту, что мы поднялись вверх на воздушном шаре, и, выбрав удобный момент, выбросили гирю. В момент выброса скорость гири будет равна нулю, но уже в конце первой секунды полета она составит 9,8 метров в секунду, в конце второй секунды - в два раза больше, то есть 19,6 м/сек, в конце третьей секунды - в три раза больше, то есть 29,4 м/сек и так далее. Скорость полета гири увеличивается с каждой секундой на 9,8 м/сек.

Именно эта величина и есть единицей ускорения. В науке ее принято обозначать латинской буквой «g». Если какое-либо физическое тело поднимается или падает вертикально, сила ускорения зависит от тяжести или, что то же самое, от силы земного притяжения. Однако существуют и другие виды ускорения, например при вращении, когда появляется центробежная сила, или в самолете, когда пилот, выходя из пикирующего полета, переходит к так называемой «горке».

Все эти виды ускорения считаются положительными.

Во время резкого торможения быстро несущегося поезда или автомобиля возникает сила ускорения с обратным знаком - отрицательное ускорение. В этом случае, сила инерции, вызванная торможением, то есть потерей скорости, или если угодно - отрицательным ускорением, бросает пассажира вперед. Во время автомобильных аварий люди чаще всего гибнут от действия отрицательного ускорения.

Было время, когда вопросы ускорения рассматривались только теоретически. После появления самолетов с большой скоростью полета, вопросы ускорения стали изучаться практически. Лет тридцать тому назад, в кругах авиаторов наделал много шума случай, когда пилот при выходе из пикирующего полета потерял управление и разбился. Оказалось, что под воздействием силы ускорения, возникшей при резкой перемене направления движения во время большой скорости полета, пилот потерял сознание и выпустил из рук рычаги управления.

Какова же причина потери сознания? Ведь это был опытный, сильный, отличавшийся железным здоровьем пилот!

В момент выхода из пикирующего полета появилась центробежная сила, которая вызвала отрицательное ускорение порядка двух до трех. По мере роста центробежной силы увеличивался вес тела пилота и его крови. Когда ускорение дошло до величины 4 g, значительная часть крови, под влиянием этой силы, отхлынула от мозга и переместилась в более низкие части тела, вследствие чего пилот стал терять зрение. Несколько мгновений позднее, когда ускорение уменьшилось, пилот ничего не видел, будто с черной повязкой на глазах.

Однако ускорение продолжало нарастать, потому что пилот вел самолет по кривой, в конце которой самолет оказался бы в положении вертикального полета вверх. Все больше крови притекало из мозга к сердцу пилота. Появились грозные симптомы. Пилоту казалось, что сердце резко падает вниз, что оно переместилось в нижнюю часть живота, а печень оказалась еще ниже, где-то около колен. Пилот уже совсем ничего не видел, и ему приходилось напрягать все силы, чтобы не потерять сознания. До сих пор ему еще не приходилось переживать такого состояния, но пилот не хотел отказаться от борьбы, не хотел подчиниться слабости своего собственного организма. Он полагал, что все неприятные ощущения минуют, как только прекратится действие центробежной силы.

Но на этот раз он просчитался. Он не принял во внимание большой начальной скорости в момент выхода из пикирующего полета и, тем самым, значительной величины центробежной силы, которая появилась в это время.

Неудачный полет продолжался. Мозг пилота, лишенный крови, прекратил работу. Когда сила ускорения дошла до 10 g, тело пилота весило уже не 85 кг, как обычно, а 850 кг. Каждый кубический сантиметр крови весил не 1 грамм, а 10, таким образом кровь стала тяжелее железа и весила почти столько же, сколько весит ртуть.

Делая последнее усилие, пилот решился выдержать еще одну секунду, перед тем как взять рычаг управления «от себя», чтобы облегчить чудовищное давление центробежной силы. Однако в то же мгновение он потерял сознание. Перетянул струну, не выдержал и… проиграл.

Самолет потерял управление, сильная и тяжелая машина стала беспорядочно падать и, в конце концов, врезалась в землю. Таков был трагический конец этого полета.

Случай этот длительное время обсуждался в кругах авиаторов, в особенности же среди физиологов, занимающихся проблемами авиационной медицины. Начались всесторонние научные исследования.

Установлено, что при ускорении порядка 5 g, даже хорошо натренированные и стойкие пилоты теряют зрение, способность дышать, в ушах у них появляются сильные боли. Если такое состояние длится не более 30–40 секунд, организм быстро его преодолевает, если же продолжается дольше - могут произойти серьезные расстройства и даже травмы.

После того, как в авиации началась эра реактивных полетов, и скорости самолетов стали превышать 1000 км/час, ученые стали получать много сведений о стойкости организма на перегрузки при наблюдениях за поведением пилотов во время выполнения фигур высшего пилотажа на больших скоростях. Строились на земле и катапульты, с помощью которых выбрасывались в воздух с большой начальной скоростью манекены, снабженные многочисленными исследовательскими приборами. Отмечались и явления, происходящие в организме парашютиста в момент перехода от свободного падения к полету с открытым парашютом.

Но такие исследования были неполными. Необходимо было создать более многосторонние, удобные и точные приборы и установки для изучения явлений, происходящих в организме человека под воздействием перегрузок.

«КАРУСЕЛЬ»

Скоро такая установка была построена. Это центрифуга, которую летчики и космонавты некоторых стран окрестили названием «карусель». Она стала основной установкой по исследованию стойкости организма к перегрузкам. Как же выглядит эта «карусель»?

В обширном круглом зале, на высоте около метра над уровнем пола, виднеется решетчатая консоль из стальных труб, несколько напоминающая строительный кран. С одного конца консоль посажена на вертикальную ось с электроприводом, мощностью 6000 л. с. Длина консоли карусели составляет 17 метров; на другом конце решетки установлена кабина с местом для сидения человека; в кабине сосредоточена разнообразная и сложная исследовательская аппаратура.

Кабина закрывается герметически, что дает возможность устанавливать внутри нее температуру и давление в весьма широких пределах, то есть можно в ней создать условия, весьма близкие к тем, которые могут господствовать в кабине космонавта во время полета в космосе.

Специальный механизм подвески кабины автоматически устанавливает ее во время испытаний в такое положение, чтобы центробежная сила действовала на человека, находящегося внутри кабины по прямой линии, подобно тому, как эта сила действует во время космического полета. Это облегчает расчеты наблюдающим за опытом врачам.

Из всех многочисленных аппаратов, находящихся в кабине, стоит обратить внимание на объектив камеры телевидения, находящийся непосредственно над головой пассажира кабины. Как только пилот займет в кабине свое место, ученые прикрепляют к его телу множество датчиков, соединенных с электронной контрольной аппаратурой. Благодаря этому, все явления, происходящие в организме пилота во время центрифугирования, точно фиксируются на лентах самопишущих приборов.

Как только консоль «карусели» начнет вращаться, в кабине возникает центробежная сила, которая воздействует на тело пилота подобно силе ускорения в кабине космического корабля или самолета. По мере роста количества оборотов эта сила тоже растет и может достичь величины 40 g, при которой вес тела пилота увеличивается до 3200 кг. Такая перегрузка для человека может окончиться смертью, поэтому ее создают только в исключительных случаях при опытах с животными.

Следует, однако, отметить, что на американской авиационной базе в Джонсвилле (центрифугу, установленную там, как раз мы описываем), в свое время получил известность рекорд, установленный одним из пилотов. Несмотря на то, что ускорение превысило опасный предел 5 g, пилот не давал сигнала к прекращению опыта, и на переданное по телефону предложение остановить центрифугу, ответил отказом. Более того, он потребовал увеличения оборотов. Пилот выдержал ускорение 8 g, потом 10 и 12 g. И только тогда, когда сила ускорения дошла до 14 g и держалась на этом уровне две минуты, пилот наконец дал понять, что больше уже выдержать не может.

Способность человеческого организма переносить перегрузки не одинакова у разных лиц и в значительной степени зависит от индивидуальных качеств, степени натренированности, состояния здоровья, возраста человека и прочее. В основном, нормальный человек при перегрузках 5 g, чувствует себя плохо, но натренированные, пользующиеся исключительным здоровьем пилоты могут выдержать перегрузку порядка 10 g в течение 3–5 минут.

Какие же перегрузки приходилось переносить до сих пор космонавтам?

По советским данным, первый в мире человек, совершивший полет в космическое пространство, Юрий Гагарин, во время старта выдержал перегрузку порядка 4 g. Американские исследователи сообщают, что космонавт Гленн выдержал возрастающую перегрузку до 6,7 g с момента старта до момента отделения первой ступени ракеты, то есть на протяжении 2 минут и 10 секунд. После отделения первой ступени ускорение возрастало с 1,4 до 7,7 g в течение 2 минут и 52 секунд.

Так как в этих условиях ускорение, а с ним и перегрузки нарастают постепенно и не длятся долго, сильный натренированный организм космонавтов переносит их без всякого вреда.

РЕАКТИВНЫЕ САНИ

Есть еще один тип установки для исследования реакции человеческого организма на перегрузки. Это реактивные сани, представляющие собой кабину, движущуюся по рельсовому пути значительной протяженности (до 30 километров). Скорость кабины на салазках доходит до 3500 км/час. На этом стенде удобнее исследовать реакции организма на перегрузки, так как на них можно создавать не только положительные, но и отрицательные ускорения. После того, как мощный реактивный двигатель сообщит салазкам через несколько секунд после старта скорость порядка 900 м/сек (то есть скорость ружейной пули), ускорение может достигнуть величины 100 g. При резком торможении, также при помощи реактивных двигателей, отрицательное ускорение может дойти даже до 150 g.

Испытания на реактивных санях пригодны в основном для авиации, а не космонавтики, и, кроме того, установка эта обходится значительно дороже центрифуги.

КАТАПУЛЬТЫ

По тому же принципу, что и реактивные сани, действуют катапульты, имеющие наклонные направляющие, по которым движется кресло с пилотом. Катапульты пригодны в особенности в авиации. На них испытывают реакции организма пилотов, которым быть может в будущем придется при аварии самолета катапультироваться, чтобы спасти свою жизнь. В этом случае, кабина вместе с пилотом выстреливается с потерпевшего аварию реактивного самолета и с помощью парашюта спускаемся на землю. Катапульты способны сообщить ускорение не больше 15 g.

«ЖЕЛЕЗНАЯ СИРЕНА»

В поисках способа предотвратить вредное воздействие перегрузок на организм человека, ученые установили, что большую пользу приносит погружение человека в жидкую среду, плотность которой примерно соответствует средней плотности человеческого тела.

Были построены бассейны, наполненные жидкой суспензией, соответствующей плотности, с устройством для дыхания; в бассейны помещали подопытных животных (мышей и крыс), после чего осуществляли центрифугирование. Оказалось, что стойкость мышей и крыс к перегрузкам возросла в десять раз.

В одном из американских научных институтов были построены бассейны, позволяющее поместить в них человека; (летчики впоследствии прозвали эти бассейны «железными сиренами»). Пилота сажали в ванну, заполненную жидкостью соответствующей плотности, и производили центрифугирование. Результаты превзошли все ожидания - в одном случае перегрузки были доведены до 32 g. Такую перегрузку человек выдержал в течение пяти секунд.

Правда, «железная сирена» с технической точки зрения несовершенна и, в частности, имеются возражения с точки зрения удобств для космонавта. Однако, не следует судить чересчур поспешно. Возможно, в недалеком будущем, ученые найдут способ улучшить условия испытаний на такой установке.

Следует добавить, что стойкость к перегрузкам во многом зависит от положения тела космонавта во время полета. На основе многих испытаний ученые установили, что человек легче переносит перегрузки в полулежачем положении, так как такое положение удобнее для циркуляции крови.

КАК ДОБИТЬСЯ УВЕЛИЧЕНИЯ СТОЙКОСТИ

Мы уже упоминали, что в проведенных космических полетах перегрузки были сравнительно небольшими и продолжались всего несколько минут. Но ведь это только начало космической эры, когда полеты людей в космос происходят по орбитам, сравнительно близким к Земле.

Теперь же мы стоим на пороге полетов на Луну, а при жизни ближайшего поколения - на Марс и Венеру. Возможно придется тогда испытывать значительно большие ускорения, и космонавты будут подвергаться значительно большим перегрузкам.

Существует еще проблема стойкости космонавтов к небольшим, но длительным, постоянным перегрузкам, длящимся в течение всего межпланетного путешествия. Предварительные данные говорят за то, что постоянное ускорение порядка долей, «g» переносится человеком без всякого труда. Уже разработаны проекты таких ракет, двигатели которых будут работать с постоянным ускорением. Не смотря на то что во время самого опыта людям приходилось переносить различные неприятные явления, опыты им не принесли никакого вреда.

Возможно, что в будущем удастся повысить стойкость человеческого организма к перегрузкам другим путем. Интересные опыты были поставлены учеными Кембриджского университета в США. Они подвергли постоянному ускорению порядка 2 g беременных мышей до тех пор, пока не появились мышата, которых держали на центрифуге в течение всей их дальнейшей жизни до самой смерти. Мыши, родившиеся в таких условиях, прекрасно себя чувствовали под воздействием постоянной перегрузки 2 g, и их поведение ничем не отличалось от поведения их собратий, живущих в нормальных условиях.

Мы далеки от мысли поставить аналогичные опыты с людьми, но все же считаем, что явление такой приспособляемости организма к перегрузкам может решить ряд задач, стоящих перед биологами.

Не исключено также, что ученые найдут способ нейтрализации сил ускорения, и человек, оснащенный соответствующей аппаратурой, легко перенесет все явления, сопутствующие перегрузкам. Еще большие надежды связаны с методом замораживания, когда чувствительность человека резко падает (об этом мы пишем ниже).

Прогресс в области повышения стойкости человеческого организма к перегрузкам весьма велик и продолжает развиваться. Уже удалось добиться большого успеха в повышении стойкости путем придания корпусу человека правильного положения во время полета, использования мягкого, устланного губчатой пластмассой кресла и скафандров специальной конструкции. Возможно ближайшее время принесет еще больший успех в этой области.

КОГДА ВСЕ ВОКРУГ ВИБРИРУЕТ

Из многих опасностей, подстерегающих космонавта во время полета, следует указать еще одну, связанную с аэродинамическими особенностями полета и работой реактивных двигателей. Опасность эту, хотя к счастью и не очень большую, несет с собой вибрация.

Во время старта работают мощные двигатели, и вся конструкция ракеты подвергается сильной вибрации. Вибрация передается телу космонавта и может повести за собой весьма неприятные для него последствия.

Вредное влияние вибрации на организм человека известно уже давно. Действительно, рабочие, пользующиеся более или менее длительное время пневматическим молотом или буром, заболевают так называемой вибрационной болезнью, которая проявляется не только сильными болями мышц и суставов верхних конечностей, но и болями в области живота, сердца, головы. Появляется одышка и затрудняется дыхание. Чувствительность организма в значительной степени зависит от того, какой из внутренних органов подвержен больше всего действию вибрации. По-разному реагируют на вибрацию внутренние органы пищеварения, легкие, верхние и нижние конечности, глаза, мозг, горло, бронхи и т. д.

Установлено, что вибрация космического корабля вредно действует на все ткани и органы человеческого организма - причем хуже всего переносится вибрация большой частоты, то есть такая, которую трудно заметить без точных приборов. Во время опытов с животными и людьми установлено, что у них под влиянием вибрации сначала увеличивается сердцебиение, возрастает давление крови, потом появляются изменения в составе крови: уменьшается количество красных кровяных телец, увеличивается количество белых. Нарушается общий обмен веществ, снижается уровень витаминов в тканях, появляются изменения в костях. Интересно, что температура тела во многом зависит от частоты вибрации. При увеличении частоты колебаний растет температура тела, при снижении частоты - температура снижается.

Поэтому ничего удивительного нет в том, что вибрация космического корабля может стать причиной значительных нарушений в жизнедеятельности организма и может отрицательно сказаться на умственной работе космонавта.

Конечно, последствия вибрации могут стать грозными при длительном ее воздействии на человеческий организм. Если бы космонавтам пришлось переносить вибрацию в течение нескольких дней, это привело бы к полному и необратимому расстройству жизнедеятельности, со всеми вытекающими отсюда последствиями.

К счастью, проблема эта не столь велика, как это кажется на первый взгляд. Дело в том, что длительность вибрации во время старта ракеты составляет всего лишь несколько минут, и хотя экипаж космического корабля испытывает при этом некоторые неудобства, но длятся они столь краткое время, что не приносят никакого вреда. Несколько дольше длится вибрация во время прохождения корабля через атмосферу при посадке. Но и это не так уж опасно. Кроме того, специальная конструкция гибкой и эластической подвески кресел, изолирующая космонавтов от корпуса ракеты, а также мягкая, пластмассовая обивка сидений и спинок кресел значительно снижают вибрацию, передающуюся от корпуса ракеты к телу космонавта.


Получил личное сообщение:

Сообщение от ккарай
>> Перегрузка была же, Юрий. И все ждут перегрузку. Ну и накройняк боевое приминения (все дымари хотят знать про перегрузку со скольки весило, со скольки больно становится).

Сел писать ответ. Но потом подумал, что, возможно, это будет интересно и другим читателям-НЕлётчикам, интересующимся авиацией.
Больно от пилотажа (перегрузки) не становится никогда. Больно пытаются сделать, когда тебе начинают грязно и мелко мстить за твоё творчество, за твой какой-нибудь рассказ, который не понравился какой-либо мелкой душонке, мрази, которая со смаком собирает сплетни о том, что могло быть или вообще не было, но рассказывает с видом знатока, что якобы было. К сожалению, таких оказалось из Борисоглебского училища многовато… Но не на того напали!
А перегрузка? С чего она, боль, будет-то? Перегрузка – это коэффициент, показывающий, во сколько раз вес вашего тела превышает то, что в нормальном состоянии. В виде формулы можно представить так:

G реал. = G норм. n y

Где G – вес, а n y – вертикальная перегрузка (голова-таз).
Из формулы понятно, что на вас в данный момент действует перегрузка, равная единице. Если n y равен нулю – это невесомость. Если станете на руки у стены и вес будет направлен таз-голова – вы почувствуете отрицательную перегрузку (минус единица).
А в полёте есть ещё боковые перегрузки n z (не расшифровываю, они незначительны), продольные n x (грудь – спина) – это очень приятные ускорения, на взлёте, например (положительные, это ускорение), при выпуске тормозного парашюта (отрицательные, это торможение).
Хуже всего переносятся вертикальные перегрузки, они же чаще воздействуют на лётчика в полёте. На глубоком вираже перегрузку надо держать 3-6-8 единиц. И чем больше крен, тем нужна большая перегрузка, чтобы удержать самолёт в горизонте и тем меньше будет радиус разворота. Перегрузка будет больше необходимой для данного крена – истребитель пойдёт с набором высоты, если меньше – вираж получится с «зарыванием» (т.е. с опусканием носа, высота начнёт падать; чтобы исправить глубокое «зарывание» придётся выводить из крена, а это в воздушном бою опасно, особенно если противник уже сзади и прицеливается). И чем больше перегрузка на вираже, тем большая тяга должна быть у двигателя, иначе начнёт падать скорость и придётся уменьшать перегрузку; а уменьшишь перегрузку – не собьёшь противника или тебя собьют.
При выполнении петли Нестерова или полупетли, при «закручивании» самолёта в первой части фигуры n y достигает 4,5-6 единиц . Т.е. вес лётчика увеличивается в 4,5-6 раз : если пилот весит 70 кг, то при пилотаже на этой фигуре его вес будет 315-420 кг. В эти разы увеличивается вес рук, ног, головы, крови, наконец! С меньшей перегрузкой выполнять эту фигуру нельзя – траектория станет растянутой и самолёт потеряет в верхней части петли скорость, что чревато срывом в штопор. С большей тоже нельзя (ну, в зависимости от типа самолёта) – самолёт выйдет на закритические углы атаки и тоже потеряет скорость. Поэтому перегрузка должна быть оптимальной (для каждого типа самолёта своя). В верхней части петли Нестерова лётчик не повисает на ремнях, а его также прижимает к сидению, т.к. самолёт надо «закручивать» с перегрузкой 2-2,5. Нижняя часть петли выполняется с перегрузкой 3,5-4,5 (зависит от типа).
Максимальные перегрузки, которые может выдержать человеческий организм – от (+)12 до (-)4.
Опасность больших вертикальных перегрузок в том, что кровь отливает от головного мозга. Если пилот на пилотаже расслаблен, а не напрягает мышцы тела, можно потерять сознание. У лётчика сужается поле зрения (со всех сторон наваливается темнота, ну как диафрагма в объективе), если перегрузку не «попустить», человек отключится. Поэтому при пилотаже лётчик напрягает все основные группы мышц. А посему физическое состояние своё надо поддерживать в хорошей форме.


На первом фото то, что видит курсант перед собой до создания большой перегрузки. На втором: создана большая перегрузка, пилот не успел сильно напрячь мышцы всего тела, кровь отлила от головного мозга, пелена во взгляде обступила со всех сторон, ещё немного инструктор потянет ручку на себя и курсант потеряет сознание...

На этих же факторах построен принцип действия противоперегрузочного костюма (ППК), его камеры пережимают тело пилота на животе, бёдрах и икрах ног, препятствуя оттоку крови. Специальный автомат подаёт воздух в камеры ППК в зависимости от перегрузки: чем больше перегрузка, тем больше обжатие тела лётчика. Но! Надо иметь в виду, что ППК не снимает перегрузку, а только облегчает её переносимость!
Наличие ППК в разы увеличивает возможности истребителя. И в воздушном бою лётчик с ППК получает преимущества перед противником, который «забыл» его надеть!

ППК не работает при отрицательных перегрузках, когда наоборот кровь большим потоком приливает к мозгу. Но с отрицательными перегрузками (когда повисаешь на ремнях, головой упираешься в остекление фонаря кабины, а пыль с плохо убранного пола попадает в лицо, глаза) воздушные бои и не ведут. Я знаю только одного лётчика, который мог уходить из-под атаки противника отрицательной перегрузкой, прицельно стрелять и сбивать самолёты из любого положения своего истребителя, в т.ч. перевёрнутого – обер-лейтенант Эрих Хартман. В годы войны совершил 1404 боевых вылета, в 802 воздушных боях одержал 352 воздушные победы, из них 344 над советскими самолётами. Про 802 воздушных боя можно говорить только условно. Э. Хартман, как правило, атаковывал противника со стороны солнца и уходил, а когда ему навязывали воздушный бой он 11 раз был сбит менее именитыми советскими истребителями – выбрасывался с парашютом или шёл на вынужденную посадку. Но этим своим умением (поражать цель из любого положения) он удивлял своих лётчиков-инструкторов даже ещё будучи курсантом, обучаясь в Ц-флюгшулле (лётное училище, которое готовило к выпуску истребителей).
Врачи рекомендуют при возникновении усталости в полёте вручную создавать давление в камерах ППК, нажимая на кнопку автомата, который и подаёт воздух в костюм. Обжатие всего тела – это воздействие на акупунктуры нервной системы, где-нибудь да на нужное место и будет воздействие. Сам этим методом пользовался неоднократно! Обжал себя – через 3-5 секунд стравливание воздуха, потом ещё. И так 3-4 раза. И как огурчик! Правы авиационные медики! Усталость снимает, как рукой! А настроение и работоспособность повышаются!

На авиационных праздниках можно видеть виртуозов, которые крутят «обратный» пилотаж – выполняют виражи, пикирования и горки, петли Нестерова, полупетли, боевые развороты и перевороты в перевёрнутом положении. (Т.е. с отрицательной перегрузкой.) И в таком напряжении их тело находится 5-7 минут! Это действительно мастерство! Высшее мастерство!! Как они это умудряются делать, мне трудно усечь! Тут нужны годы тренировки. Это мастерство в сотни раз увеличивается, когда такой пилотаж выполняется в паре: один лётчик пилотирует самолёт нормально, а другой метрах в десяти стоит над ним в перевёрнутом положении (кабина к кабине) и так сохраняет своё место в строю! Малейшая несогласованность в действиях и столкновение неминуемо, погибнут оба! Однако такой пилотаж будет вытянутым в вертикальной плоскости – это чтобы не превышать отрицательную перегрузку для перевёрнутого самолёта (-) 4. После посадки у этих лётчиков, выполнявших фигуры обратного пилотажа, чаще всего красные белки глаз (если отрицательные перегрузки предельные, и тогда мелкие капилляры лопаются). Но так летают только спортивные самолёты, боевые самолёты в перевёрнутом положении могут летать не более 30 секунд (по обеспечению топливом двигателей из бачков отрицательных перегрузок). Это действительно высококлассные лётчики-спортсмены! Я так никогда не летал! Вернее, было один раз: уходил от атаковавшего меня истребителя в учебном воздушном бою отжатием ручки от себя на вираже (получился вираж «обратный») Ушёл! «Противник» (командир полка подполковник Туненко Борис Тихонович, имевший опыт реальных воздушных боёв на Бл. Востоке, где он открыл счёт сбитым – один F-4e «Фантом») к такому маневру готов не был и не последовал за мной. Меня потеряли из виду, Я атаковал его с задней полусферы-сверху и «сбил» его. Но это было один раз, и скажу, что ощущения не из приятных! И я убедился: данный приём Э. Хартмана очень эффективен, прежде всего неожиданностью применения. (Впрочем, нет, был у меня ещё один такой случай, когда меня в учебном воздушном бою «зажимали» два истребителя, а я от них ушёл подобным методом. Но об этом расскажу как-нибудь в другой раз.)
А перед лётчиками-спортсменами, которые так могут пилотировать регулярно, я снимаю шляпу!
В современном ближнем воздушном бою перегрузка должна быть 6-8 ед. и более на протяжении всего боя! Будет меньше – собьёшь не ты, собьют тебя!
При катапультировании вертикальная перегрузка воздействия на тело лётчика достигает 18-20 единиц. Приятного мало.
«Но как же так! - воскликните вы. - Вы же только что говорили, что предел для человеческого организма – (+)12! А тут 20 единиц!»
Всё верно! Не отказываюсь! Просто при выстреле катапульты такое воздействие перегрузки на организм лётчика кратковременно, доли секунды. Поэтому при правильном положении тела пилота (голова прямо и с силой вжата в заголовник кресла, спина прижата к спинке кресла, бёдра и туловище составляют прямой угол, а позвоночник, в вертикальном положении и образует перпендикуляр по отношению к сидению; кроме того, все мышцы тела должны быть сильно напряжены) отрицательные моменты сведены к минимуму и позвонки не успевают высыпаться в трусы! Если в момент выстрела голова будет наклонена вперёд-вниз, в сторону или даже просто не прижата с силой к заголовнику (за счёт огромной перегрузки она наклонится сама), если пилотяга перед катапультированием развалился в кабине, как дома в любимом кресле перед телевизором, перелома шейных позвонков в первом случае и поясничного отдела позвоночника во втором не избежать. И чем быстрее такого пилота найдут спасатели, тем лучше. Сам он не выживет! Потом будет от 6 до 12 месяцев лежать на досках в гипсе с ног до головы, как бревно, не переворачиваясь. Позвоночник консолидируется, конечно, но это уже будет не тот, что сработан природой. И чем выше был перелом, тем большее количество органов в его теле будет работать хуже и хуже. Такие люди уменьшают свою жизнь на 12-20 лет! Однажды в Киевском госпитале, когда я проходил комиссию, встретил Александра Санатова, с которым служил в Монголии. Много лет назад Саша лейтенантом вынужденно катапультировался на пределе с неправильной посадкой в кресле! («А! Сойдёт!») В результате получил перелом поясничного отдела позвоночника. Долгие упорные месяцы и годы лечения. Спрашиваю: «Как оно сейчас?» - «Живу на лекарствах… По 7-8 месяцев в году в госпитале!..» (Когда-нибудь я опишу этот случай… Он по-своему интересен и поучителен…)
Слышал, что на некоторых первых американских самолётах лётчиков катапультировали в сторону. Но там была сложная система разрушения боковой стенки кабины, да и не всегда можно было сохранить шейные позвонки пилотам. От этого отказались. Были самолёты, где члены экипажа (штурман, стрелок) катапультировались вниз. (Первые серии Ту-16 все члены экипажа, кроме лётчиков, катапультировавшихся вверх, и на Ту-22.) Но в этом случае резко повышались минимальные высоты спасения (а иногда делали это невозможным), а такие пилоты долго проходили период реабилитации...
Самое оптимальное для здоровья лётчиков было бы катапультирование вперёд. Тут вообще травм, скорее всего, никогда не было бы! Но технически осуществить это просто невозможно!

Самолёта. Перегрузка - безразмерная величина, однако часто единица перегрузки обозначается так же, как ускорение свободного падения , g . Перегрузка в 1 единицу (или 1g) означает прямолинейный полет, 0 - свободное падение или невесомость. Если самолёт выполняет вираж на постоянной высоте с креном 60 градусов, его конструкция испытывает перегрузку в 2 единицы.

Допустимое значение перегрузок для гражданских самолётов составляет 2,5. Обычный человек может выдерживать любые перегрузки до 15G около 3-5 сек без отключения, но большие перегрузки от 20-30G и более человек может выдерживать без отключения не более 1-2 сек и зависимости от размера перегрузки, например 50G=0.2 сек. Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки от −3…−2 до +12 . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7-8 G в глазах «краснеет» и человек теряет сознание из-за прилива крови к голове.

Перегрузка - векторная величина, направленная в сторону изменения скорости. Для живого организма это принципиально. При перегрузке органы человека стремятся оставаться в прежнем состоянии (равномерного прямолинейного движения или покоя). При положительной перегрузке (голова-ноги) кровь уходит от головы в ноги. Желудок уходит вниз. При отрицательной-кровь подступает в голову. Желудок может вывернуться вместе с содержимым. Когда в неподвижную машину врезается другое авто - сидящий испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении вектор направлен грудь-спина, что позволяет выдержать несколько минут . Противоперегрузочных средств космонавты не применяют. Они представляют из себя корсет с надуваемыми шлангами, надувающимися от воздушной системы и удерживают наружную поверхность тела человека, немного препятствуя оттоку крови.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Перегрузка (авиация)" в других словарях:

    Перегрузка: Перегрузка (авиация) отношение подъёмной силы к весу Перегрузка (техника) в ускоряющихся объектах Перегрузка (шахматы) шахматная ситуация, когда фигуры (фигура) не в состоянии справиться с поставленными задачами. Перегрузка… … Википедия

    1) П. в центре масс отношение n результирующей силы R (сумма тяги и аэродинамической силы, см. Аэродинамические силы и моменты) к произведению массы летательного аппарата m на ускорение свободного падения g: n = R/mg (при определении П. для… … Энциклопедия техники

    Наибольшее nэymax и наименьшее nэymin допустимые по прочности конструкции значения нормальной перегрузки ny. Значение Э. п. определяется на основании Норм прочности для различных расчётных случаев, например для манёвра, полёта при болтанке. По… … Энциклопедия техники

Земные Перегрузки

При столкновении автомобиля с неподвижной преградой сидящий в автомобиле человек испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Обычный человек может выдерживать перегрузки до 15 g около 3 - 5 секунд без потери сознания. Перегрузки от 20 - 30 g и более человек может выдерживать без потери сознания не более 1 - 2 секунд и зависимости от величины перегрузки.

Перегрузки применительно к человеку:

1 - 1 g .

3 - 15 g в течение 0,6 сек.

5 - 22 g .

Одно из основных требований к военным летчикам и космонавтам - способность организма переносить перегрузки. Тренированные пилоты в противоперегрузочных костюмах могут переносить перегрузки от −3 … −2 g до +12 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7 - 8 g в глазах «краснеет», пропадает зрение, и человек постепенно теряет сознание из-за прилива крови к голове. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении перегрузка действует в направлении грудь - спина, что позволяет выдержать несколько минут перегрузку в несколько единиц g. Существуют специальные противоперегрузочные костюмы, задача которых - облегчить действие перегрузки. Костюмы представляют из себя корсет со шлангами, надувающимися от воздушной системы и удерживавшими наружную поверхность тела человека, немного препятствуя оттоку крови.

Космические перегрузки

При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g.

Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.

С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.

При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.

При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).

Вывод:

Если приток крови в состоянии невесомости на порядок больше чем на Земле, то и потеря сознания из за чрезмерного притока крови к голове будет как при меньшем g , так и по сумме сек которые может выдержать космонавт.. Но есть один + Т.к мы в далеком будущем наши противоперегрузочные костюмы например которые в комплекте с 350р будут на порядок лучше способствовать сохранения сознания при сильных и длительных перегрузках + должна спасать искусственная гравитация которая за 2-5 сек должна создавать противовес перегрузкам.

По данным медиков, головной мозг человека может выдержать перегрузки около 150 g, если они действуют на мозг не более 1–2 мс; со снижением перегрузок растет время, в течение которого человек может их испытывать, а перегрузка 40 g даже при длительном воздействии считается относительно безопасной для головы.

Безопасной считается перегрузка до 72 g, в промежуточную «красную» зону попадают перегрузки от 72 до 88 g, а при превышении 88 g травма головы считается высоковероятной. Немаловажной в методике EuroNCAP является и оценка давления, действующего на грудь человека: безопасным считается сжатие грудной клетки на 22 мм, предельным – сжатие на 50 мм.

Выпуск 52

В новом видеоуроке астрономии профессор расскажет о перегрузки космонавтов при старте, а также о космических лучах.

Перегрузки космонавтов при старте

Почему космонавты взлетают в ракете лёжа? Такое положение космонавтов при старте является вынужденным и виноваты в этом перегрузки. Перегрузки, воздействующие на космонавтов при старте очень велики. Около пяти минут ракета движется с ускорением от 1 до 7g. Иными словами, вес космонавтов на этот период увеличивается в семь раз! По этой причине, большинство операций, связанных с управлением ракетой, производится автоматикой. Ведь даже просто поднять руку, потяжелевшую в семь раз, очень трудно. Перегрузки космонавтов при старте не только отражаются на их весе, но и на циркуляции крови в организме. Сердцу трудно прокачивать потяжелевшую кровь против вектора силы тяжести. То есть, если космонавт будет находиться в вертикальном положении, сердце просто-напросто не сможет поднять кровь к его мозгу. Это вызывает потерю сознания и очень опасно для здоровья. Для того, чтобы свести перегрузки космонавтов при старте и торможении к минимуму, учёные рассчитали оптимальную позу. Угол между спиной и бедром космонавта должен составлять 100 градусов. А между бедром и голенью 117 градусов. Наклон спины приблизительно 12 градусов. Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при перегрузках до 10g, а кратковременно — даже до 25g.

Космические лучи

Что такое космические лучи и откуда они берутся? Космические лучи — это частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве. Космические лучи являются составляющей естественной радиации на поверхности Земли и в атмосфере. По количеству частиц космические лучи на 90 процентов состоят из протонов, на 7 процентов — из ядер гелия, около 1 процента составляют более тяжелые элементы, и около 1 процента приходится на электроны. При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента — по порождаемому ею синхротронному излучению, которое приходится на радиодиапазон. А при сильных магнитных полях в районе источника космических лучей — и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами.