Мощный dc. Преобразователь напряжения dc dc

Пролог.

У меня есть два мультиметра, и оба имеют один и тот же недостаток – питание от батареи напряжением 9-ть Вольт типа «Крона».

Всегда старался иметь в запасе свежую 9-тивольтовую батарею, но, почему-то, когда требовалось что-то измерить с точностью выше, чем у стрелочного прибора, «Крона» оказывалась либо неработоспособной, либо её хватало всего на несколько часов работы.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца. Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.



Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.


Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.


Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.


Настройка преобразователя.

Настройка может потребоваться для установки необходимого уровня выходного напряжения.

Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.

Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.

Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.

Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения. Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя.


Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.


Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например , все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.


Окончательная сборка импульсного преобразователя напряжения.

Перед окончательной сборкой, все элементы схемы были соединены многожильным проводом, и была проверена способность схемы принимать и отдавать энергию.


Для предотвращения замыкания, импульсный преобразователь напряжения был со стороны контактов заизолирован силиконовым герметиком.


Затем все элементы конструкции были размещены в корпусе от «Кроны». Для того, чтобы передняя крышка с разъёмом не утапливалась внутрь, между передней и задней стенками была вставлена пластинка из целлулоида. После чего, задняя крышка была закреплена клеем «88Н».


Для зарядки модернизированной "Кроны" пришлось изготовить дополнительный кабель со штекером типа Джек 3,5мм на одном из концов. На другом конце кабеля, для снижения вероятности короткого замыкания, были установлены стандартные приборные гнёзда, вместо аналогичных штекеров.

Доработка мультиметра.

Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.

Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.


Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.


Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.


В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.

К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).


Мелкие подробности.

Сложно было приобрести всего один аккумулятор. Их в основном продают, либо парами, либо по четыре штуки. Однако некоторые комплекты, например, «Varta», поставляются по пять аккумуляторов в блистере. Если Вам повезёт так же, как и мне, то Вы сможете разделить с кем-нибудь такой комплект. Аккумулятор я купил всего за 3,3$, тогда как одна «Крона» стоит от 1$ до 3,75$. Есть, правда, ещё «Кроны» и по 0,5$, но те и вовсе мёртворождённые.

Зачастую в радиолюбительской практике возникает необходимость в получении различных стабилизированных напряжений для питания устройств. Наиболее часто для этих целей служат:

  • параметрические стабилизаторы (на основе стабилитрона при малых токах потребления устройства);
  • линейные стабилизаторы на транзисторной основе либо на основе стабилизаторов LM78XX, LM317. Возможности таких стабилизаторов по току ограничены 1,5 Амперами. Кроме того, еще одним фактором ограничивающим спектр применения данных стабилизаторов, является преобразование входного напряжения в выходное с выделением большого количества тепла, то есть если входное напряжение будет 20 Вольт, а применяется стабилизатор с выходным напряжением 9 Вольт, то лишние 11 Вольт будут превращаться в тепло. При этом корпус ИС разогревается до достаточно высоких температур и для его отведения требуются радиатор, термопаста, а при высоких токах нагрузки и принудительное охлаждение вентилятором, для которого так же необходимо питание;


  • импульсные стабилизаторы . В данных стабилизаторах осуществляется преобразование постоянного входного напряжения в импульсные колебания с последующей их стабилизацией. Одним из представителей данного сектора стабилизаторов является ИС LM2596. По сути это импульсный преобразователь с большим количеством режимов работы. В силу отсутствия всяких линейных процессов во внутреннем мире ИС, тепловые потери на корпусе минимальны. Подключение микросхемы требует минимального количества навесных элементов в зависимости от требуемых целей. Типовое включение показано на рисунке.


Наиболее удачным решением для радиолюбителей и мастеровых людей представляет исполнение данной микросхемы в регулируемом варианте - LM2596ADJ. Даташит на можно посмотреть здесь.



На основе микросхемы китайская народная промышленность выпускает широкий спектр готовых модулей dc-dc преобразователей, как понижающих, так и повышающих. Одним из них является вот такой dc-dc step down модуль.


Изделие обладает следующими характеристиками:

  • входное напряжение: 4 В ~ 35 В
  • выходное напряжение: 1.23 В ~ 30 В
  • выходной ток: 2 А (Номинальный), 3 А (Макс. с радиатором)
  • эффективность преобразования: 92%
  • выходные пульсации: < 30 мВ
  • частота преобразования: 150 кГц
  • температурный рабочий диапазон: - 45 ~ + 80 С (Весьма условные показатели)
  • размер модуля: 43 * 21 * 14 мм.

Единственное, что требуется перед началом эксплуатации - это установить требуемое напряжение на выходе на холостом ходу и проверить его под нагрузкой.




Надо отметить, что входное напряжение должно быть хотя бы на 1,5 В больше выходного. При необходимости, установив на микросхему радиатор и применив принудительное охлаждение, можно добиться величины выходного тока в 4,5 Ампера. Однако такой режим работы является экстремальным и в виду дешевизны модуля лучше использовать несколько их штук с параллельным включением. Так же как и в случае с LM78XX, на основе данных модулей можно строить двуполярные источники питания.


Для этого вместо конденсатора на входе (С1, С2), стабилизаторов LM7805 (и т.д.), конденсаторов на выходе следует установить обозреваемые понижающие модули. Кроме указанных выше характеристик модуль обладает защитами от короткого замыкания и по температуре. При достижении микросхемой температуры в 125 градусов Цельсия работа ИС прекращается и возобновляется только после ее снижения. Таким образом, вывести ИС из строя модуль весьма и весьма сложно.

В своей практике применял данные модули для питания зарядных устройств литиевых аккумуляторов (в связке с контроллером заряда), радиоприемников, mp3-проигрывателей, мощных светодиодов с резистивным ограничением по току. Одним словом, область применения модуля довольно широка.

Для сравнения сначала запитал радиоприемник от стабилизатора на основе LM7809 с сетевым выпрямителем на трансформаторе, потом схему на LM7809 заменил данным модулем. В результате низкочастотный фон в динамике пропал. К сожалению, производитель модулей не установил защитный диод на входе, предотвращающий выход схемы из строя в результате переполюсовки питания, но это можно сделать и самому. Специально для сайта - Кондратьев Николай, г. Донецк

Обсудить статью ПОНИЖАЮЩИЕ ПРЕОБРАЗОВАТЕЛИ

Подходит например для питания ноутбука в авто, для преобразования 12-24, для подзарядки автомобильного аккумулятора от БП на 12V и т.п

Преобразователь добирался с левым треком типа UAххххYP и о-очень долго, 3 месяца, чуть диспут не открыл.
Продавец хорошо замотал устройство.


В комплекте были латунные стойки с гаечками и шайбочками, которые сразу прикрутил, чтобы не затерялись.





Монтаж довольно качественный, плата отмыта.
Радиаторы вполне приличные, хорошо закреплены и изолированы от схемы.
Дроссель намотан в 3 провода - правильное решение на таких частотах и токах.
Единственное - дроссель не закреплён и висит на самих проводах.


Реальная схема устройства:


Наличие стабилизатора питания микросхемы порадовало - это значительно расширяет диапазон входного рабочего напряжения сверху (до 32В).
Выходное напряжение естественно не может быть меньше входного.
Подстроечным многооборотным резистором можно настраивать выходное стабилизированное напряжение в диапазоне от входного до 35В
Красный светодиодный индикатор горит при наличии напряжения на выходе.
Собран преобразователь на базе широко распространённого ШИМ контроллера UC3843AN

Схема подключения - стандартная, добавлен эмиттерный повторитель на транзисторе для компенсации сигнала с токового датчика. Это позволяет повысить чувствительность токовой защиты и снизить потери напряжения на токовом датчике.
Рабочая частота 120кГц

Если-бы Китайцы и тут не накосячили, я-бы сильно удивился:)
- При небольшой нагрузке, генерация происходит пачками, при этом слышно шипение дросселя. Также заметна задержка регулирования при изменении нагрузки.
Это происходит из-за неверно выбранной цепи компенсации обратной связи (конденсатор 100нФ между 1 и 2 ногами). Значительно уменьшил ёмкость конденсатора (до 200пФ) и подпаял сверху резистор 47кОм.
Шипение пропало, стабильность работы возросла.


Конденсатор для фильтрации импульсных помех на входе токовой защиты поставить забыли. Поставил конденсатор 200пФ между 3 ногой и общим проводником.


Отсутствует шунтирующая керамика параллельно электролитам. При необходимости, можно допаять SMD керамику.

Защита от перегрузки имеется, защиты от КЗ нет.
Никаких фильтров не предусмотрено, входной и выходной конденсаторы не очень хорошо сглаживают напряжение при мощной нагрузке.

Если входное напряжение вблизи нижней границе допуска (10-12В), имеет смысл переключить питание контроллера со входной цепи на выходную, перепаяв предусмотренную на плате перемычку

Осциллограмма на ключе при входном напряжении 12В


При небольшой нагрузке наблюдается колебательный процесс дросселя


Вот что удалось выжать в максимуме при входном напряжении 12В
Вход 12В / 9A Выход 20В / 4,5А (90 Вт)
При этом оба радиатора прилично разогрелись, но перегрева не было
Осциллограммы на ключе и выходе. Как видно, пульсации очень велики из за небольших емкостей и отсутствия шунтирующей керамики



Если входной ток достигает 10А, преобразователь начинает противно свистеть (срабатывает токовая защита) и выходное напряжение снижается

На самом деле, максимальная мощность преобразователя сильно зависит от входного напряжения. Производитель заявляет 150Вт, максимальный входной ток 10А, максимальный выходной ток 6А. Если преобразовывать 24В в 30В, то конечно он выдаст заявленные 150Вт и даже немного больше, только вряд-ли это кому-то нужно. При входном напряжении 12В, можно рассчитывать только на 90Вт

Выводы делайте сами:)

Планирую купить +91 Добавить в избранное Обзор понравился +68 +149

Сегодня в обзоре знаменитый DC-DC повышающий преобразователь напряжения на базе микросхемы MT3608. Плата популярна среди любителей создавать что-то своими руками. Применяется в частности для построения самодельных внешних зарядных устройств (power bank).








Сегодня мы проведем очень детальный обзор, изучим все достоинства и выясним недостатки

Стоит такая плата всего 0,5$, зная, что в ходе обзора предстоят жесткие тесты, которые могут обернуться выходном из строя плат, я купил сразу несколько штук.







Плата весьма неплохого качества, монтаж двухсторонний, если быть точнее почти вся обратная сторона - масса, одновременно играет роль теплоотвода. Габаритные размеры 36 мм * 17 мм * 14 мм








Производитель указывает следующие параметры

1). Максимальный выходной ток - 2А
2). Входное напряжение: 2 В ~ 24 В
3). Максимальное выходное напряжение: 28 В
4). Эффективность: ≤93%
Размер продукта: 36 мм * 17 мм * 14 мм

А схема представлена ниже.


На плате имеется подстроечный многооборотный резистор с сопротивлением 100кОм, предназначен для регулировки выходного напряжения. Изначально, для работы конвертора нужно покрутить переменник 10 шагов против часовой стрелки, лишь после этого схема начнет повышать напряжение, иными словами - до половины переменник крутится вхолостую.


На плате подписан вход и выход, поэтому проблем с подключением не возникнет.
Перейдем непосредственно к тестам.

1) Заявленное максимальное напряжение 28 Вольт, что соответствует реальному значению


2) Минимальное напряжение, при котором плата начинает работу - 2 Вольт, скажу, что это не совсем так, плата сохраняет работоспособность при таком напряжении, но начинает работу от 2,3-2,5 Вольт

3) Максимальное значение входного напряжения составляет 24 Вольт, скажу, что одна из 8 и купленных плат у меня не выдержила такое напряжение на входе, остальные сдали экзамен на отлично.


4) Режим короткого замыкания на выходе. Лабораторный блок питания, от которого питается источник, снабжен системой ограничения по току, при КЗ на выходе потребление с лабораторного БП составляет 5 А (это максимум, что может дать ЛБП). Исходя из этого делаем вывод, что если подключить инвертор например к аккумулятору, то при коротком замыкании последний моментально сгорит - защит от КЗ не имеет. Не имеется также зашита от перегрузки.


6) Что будет, если перепутать полярность подключения. Этот тест хорошо виден в ролике, плата попросту сгорает с дымом, притом сгорает именно микросхема.

7) Ток холостого хода всего 6мА, очень неплохой результат.


8) Теперь выходной ток. На вход подается напряжение 12 Вольт, на выходе 14, т.е разница вход-выход всего 2 Вольт, обеспечены наилучшие условия работы и если с таким раскладом схема не выдаст 2 Ампер, значит при других значениях вход-выход она этого обеспечить не может.


Температурные тесты

P.S. в ходе тестов дроссель начал попахивать лаком и в связи с этим он был заменен на более хороший, по крайней мере диаметр провода нового дросселя раза в 2 толще, чем у родного.

В случае этих тестов на вход платы подается напряжение 12 Вольт, на выходе выставлено 14

Тепловыделение на дросселе, дроссель уже заменен


Тепловыделение на диоде



Тепловыделение на микросхеме



Как видим температура в некоторых случаях выше 100 гр, но стабильна.

Нужно также указать, что в таких условиях работы выходные параметры значительно ухудшаются, что и стоило ожидать.

Как видим при выходном токе 2А, напряжение просаживается, поэтому рекомендую эксплоатировать платку при токах 1-1,2Ампер максимум, при больших значениях теряется стабильность выходного напряжения, а также перегревается микросхема, дроссель и выходной выпрямительный диод.

9) Осциллограмма выходного напряжения, где наблюдаем пульсации. 



Ситуация исправиться если параллельно выходу запаять электролит (35-50Вольт), емкость от 47 до 220мкФ.(можно до 470, больше уже нет смысла)


Рабочая частота генератора около 1,5МГц



Погрешность тестов не более 5%